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ABSTRACT

This paper proposes SymDetector, a smartphone based appli-
cation to unobtrusively detect the sound-related respiratory
symptoms occurred in a user’s daily life, including sneeze,
cough, sniffle and throat clearing. SymDetector uses the
built-in microphone on the smartphone to continuously mo-
nitor a user’s acoustic data and uses multi-level processes to
detect and classify the respiratory symptoms. Several prac-
tical issues are considered in developing SymDetector, such
as users’ privacy concerns about their acoustic data, resource
constraints of the smartphone and different contexts of the
smartphone. We have implemented SymDetector on Galaxy
S3 and evaluated its performance in real experiments involv-
ing 16 users and 204 days. The experimental results show
that SymDetector can detect these four types of respiratory
symptoms with high accuracy under various conditions.
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INTRODUCTION

Respiratory symptoms are related to illnesses, infections or
allergies. Among such symptoms, sound-related respiratory
symptoms, such as sneeze, cough, sniffle and throat clear-
ing, are commonly observed and useful in health-related re-
search. For example, by collecting self-reported flu symp-
toms including aforementioned ones from registered users
every week, a nationwide flu map is built in [6] to illustrate
how flu spreads. In [7], self-reported symptom data includ-
ing cough and dry throat is collected to study the relation-
ship between student health and indoor air quality in schools.
However, self-reporting, which has been commonly used in
the current research to collect respiratory symptom data, has
been shown to be inefficient and inaccurate in [28, 15].
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To deal with this issue, in this paper, we present a practi-
cal system SymDetector to help researchers collect accurate
sound-related respiratory symptom data from users by using
off-the-shelf smartphones. SymDetector leverages the built-
in microphone sensor to sense the phone’s acoustic context
and detect the user’s acoustic events which are related to
respiratory symptoms, including sneeze, cough, sniffle and
throat clearing. SymDetector can work in an unobtrusive way
to collect users’ symptoms for a long period and the detection
results can be provided to help medical research.

For certain types of symptoms such as sneeze and cough,
there has been some research on how to detect them [23,
13, 29, 22, 15]. However, approaches proposed in [23] and
[13] are not practical since users have to wear specialized sen-
sors (piezoelectric sensor in [23] and accelerometer in [13])
on their chests to detect coughs. Audio based schemes for
sneeze and cough detection have been proposed in [29] and
[22], but they need to record users’ audio data all day long
and cannot work in real time. Larson et al. [15] proposed a
real-time cough detection system by implementing machine
learning techniques on smartphones. However, to sample a
user’s acoustic data, the phone has to be in a specific position
(around the user’s neck), and their system consumes lots of
power (shown in Performance Evaluations).

Different from the aforementioned works, SymDetector de-
tects four types of respiratory symptoms (i.e., sneeze, cough,
sniffle and throat clearing) and considers several practical is-
sues, such as users’ privacy concerns about their acoustic
data, resource constraints of the smartphone and different
contexts of the smartphone. SymDetector consists of four
components. Audio Sampler reads audio samples from the
microphone and segments them as frames and windows. The
windows which may potentially contain respiratory symp-
toms are sifted out by Symptom Detector and fed to Symptom
Classifier, where acoustic features are extracted and multi-
level classifiers are used to classify the respiratory symptoms.
The detection results are then recorded in Symprom Recorder.
SymDetector only buffers a window for a short time and the
buffered window is discarded after being processed. All the
acoustic data is processed locally and no raw data will be
recorded on the phone permanently. SymDetector is designed
to be lightweight and robust, so that it can work on a smart-
phone for a long time and detect respiratory symptoms un-
der various contexts. We have implemented SymDetector on
the Andorid based phone Galaxy S3 and evaluated its perfor-
mance in real experiments involving 16 users and 204 days.
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Figure 1: The architecture of SymDetector.

The results show that our system can detect respiratory symp-
toms with high accuracy under various conditions.

The rest of this paper is organized as follows. In the next
section, we discuss the design considerations in developing
SymDetector. Then, we present the system architecture and
illustrate the design details of each component in SymDetec-
tor. The implementation of SymDetector on Android based
phone and the evaluation of its performance in real experi-
ments are demonstrated in the following sections. Then the
limitation is discussed and the related work is reviewed be-
fore concluding this paper.

DESIGN CONSIDERATIONS

SymDetector is designed to unobtrusively detect and record a
user’s respiratory symptoms occurred in his/her daily life us-
ing a smartphone. To achieve this goal, the following design
issues should be considered.

First, users’ privacy should be protected when SymDetector is
working. Since SymDetector needs to monitor users’ acous-
tic data, which may contain large quantities of personal and
private information (e.g., conversations or background noise
that may expose users’ locations or activities), users will be
concerned about how their acoustic data is sampled and used
in the application. To protect users’ privacy, no raw acoustic
data is permanently recorded in SymDetector. SymDetector
only stores a short period of samples temporarily to detect
whether any respiratory symptom exists or not, and then these
samples will be discarded. To prevent users’ acoustic data
from being disclosed, all the samples are processed locally
and no raw data is transferred to remote servers. Eventual-
ly, only the detection results (e.g., the occurrence time and
the type of each symptom) are kept and users can track them
locally or upload them to some trusted servers.

Second, SymDetector must be lightweight. Since it is hard to
know when a respiratory symptom will occur beforehand, the
microphone must keep sensing users’ acoustic data, which
requires SymDetector to be able to process a large amount
of raw acoustic data in real time. To preserve users’ pri-
vacy, all the sampled data must be processed locally on the
smartphone, which has limited resources. Thus, SymDetector
should be lightweight (i.e., it should consume less CPU and
power). Although there are some existing sneeze [29, 30]
and cough [15, 22, 21] detection schemes based on acous-
tic signal processing, they are not lightweight and cannot be
directly applied in SymDetector.

Third, the positions of the smartphone with respect to the user
(i.e., the context of the phone) should be considered to make
SymDetector work unobtrusively and robustly. Due to users’
different usage patterns, phones may work in various con-
texts. For example, some users prefer to put their phones
on the desk when they work or study, while others prefer
to put their phones in pockets or backpacks when phones
are not used. Even for the same user, the context of his/her
phone may change within a day. For example, a user may
put his phone in the pocket when he works, but take it out of
pocket when he wants to use the phone (e.g., sending texts,
checking emails, playing games). According to the laws of
acoustic wave propagation, the acoustic samples recorded by
a phone will be affected by the context of the phone. There-
fore, SymDetector should be able to detect respiratory symp-
toms in different contexts.

SYSTEM DESIGN

In this section, we present the design of SymDetector consid-
ering the above issues. As shown in Figure 1, SymDetector
consists of four components. Audio Sampler is used to read
acoustic samples from the microphone and segment them as
frames and windows for further analysis. All windows of
samples are processed by Symprom Detector. It sifts out the
windows which may potentially contain respiratory symp-
toms and passes them to Symptom Classifier, where multi-
level classifiers are used to classify each respiratory symptom.
The detection results are recorded in Symptom Recorder. The
design details of each component are described as follows.

Audio Sampler

The audio signals can be sampled at different sampling
rates. For example, the microphone on Samsung’s smart-
phone Galaxy S3 can work at 8§ KHz, 11.025 KHz, 16 KHz,
22.05 KHz and 44.1 KHz. As the same in [10], the sampling
rate in SymDetector is set to 16 KHz. Audio signals are con-
tinuously sampled from the microphone and each sample is
represented by a 16-bit binary value.

The sampled audio stream is then segmented into non-
overlapped frames of 50 ms (i.e., 800 samples) for feature
extraction. As can be seen from Figure 2, which depicts the
distribution of the symptom length based on our preliminary
dataset, since respiratory symptoms may last for hundreds of
milliseconds and cover several frames, it is difficult to deter-
mine whether a symptom occurs or not and when it occurs
merely based on features extracted from one single frame.
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Figure 2: The distribution of symptom length.

Therefore, several continuous frames are grouped together as
a window and each window is fed to the Symptom Detec-
tor as a unit for processing. The window in SymDetector is
set to 4 seconds (i.e., 80 frames) so that it is long enough to
cover the entire symptom and short enough to protect users’
privacy. Since the windows are segmented based on the time-
line, it is possible that a symptom may start at somewhere
in the rear part of a window and end at the front part of the
next window. In this case, though the window is larger than
the event length, the entire event is not covered by any single
window, which makes it difficult to extract window-level fea-
tures correctly. In order to cover this window-crossing event
in one window, the windows are built to overlap each other.
As observed in Figure 2, even the longest symptom does not
last more than 1 second. Thus in SymDetector, the overlap
between windows is set to 1 second. Once a window of 64K
samples (16K from the previous window and 48K newly sam-
pled from microphone) is obtained, it is fed to the Symptom
Detector.

Symptom Detector

Symptom Detector is designed as a filter to sift out the win-
dows which potentially contain respiratory symptoms from
the audio stream. The aim of the Symptom Detector is to use
a lightweight scheme to filter out as many non-symptom win-
dows as possible, leaving only a small number of windows to
Symptom Classifier, where multi-level classifiers are used to
classify them as sneeze, cough, sniffle, throat clearing or non-
symptoms in a more precise way. Since in indoor environ-
ment, the predominant non-symptom windows are those con-
taining either ambient noises or continuous acoustic events
(e.g., talking or music), filtering out these windows are the
main purpose of Symptom Detector. For other non-symptom
windows which contain discrete acoustic events (e.g., knock-
ing on a desk), they will be filtered out in the next compo-
nent. In what follows, we introduce the time-domain features
used in Symptom Detector and illustrate how these features
are used to filter out non-symptom windows when the phone
works in various contexts.

Time-domain Features

Although time-domain features are not sufficient to identify
each kind of respiratory symptom, they can be used to fil-
ter out many of the windows without respiratory symptoms
and their calculation only consumes a little CPU and power.
Three time-domain features (one frame-level feature and two
window-level features) are used in Symptom Detector.

Root Mean Square (RMS): Let f denote a frame consisting
of n samples and let s; denote the normalized amplitude value
(i.e., s; is scaled from its original 16-bit binary value recorded
by microphone to [—1, 1]) of the i-th sample in f, then frame
f’sRMS is:

Di Si

n

rms(f) =

RMS [10] measures the energy contained in an acoustic frame
and the following two window-level features are calculated
based on it.

Above a-Mean Ratio (AMR): Let f; denote the i-th frame
in a window w consisting of m frames and given parameter
o, w’s AMR is calculated as:

Yot indlrms(f;) > a - Tms(w)]

amr(o,w) =
m

where 7ms(w) is the mean RMS of window w and ind() is
the indicator function which returns 1 if its argument is true
and 0 otherwise.

AMR measures the ratio of the high-energy frames in a win-
dow and parameter « is used together with the window’s
mean RMS to set a threshold for distinguishing high-energy
frames from low-energy frames. Since in indoor environment
(e.g., office or home), acoustic event frames usually contain
much more energy than ambient noise frames, in a window
with discrete acoustic event, when « is set to close to 1, AMR
approximately reflects the proportion of the event frames in
the window. Given an appropriate «, windows containing
discrete acoustic events, continuous acoustic events and am-
bient noises will return different AMR values and thus this
feature can be used to sift out windows with discrete acoustic
events. In SymDetector, the default value of « is set to be 0.5.

Average of Top k¥ RMSs (ATR): Let f; denote the frame
with the i-th largest RMS in window w. Considering the top
k RMSs, ATR is calculated as:

atr(k,w) = 722;1 rms(fi)
k

ATR measures the average RMS of the first k£ frames with the
most energy. It is used to discern windows containing high-
energy events from windows containing low-energy events.
As shown in Figure 2, since more than 95% of the respiratory
symptoms last longer than 0.1 seconds (i.e., 2 frames), k is
set to 2 in SymDetector.

Adaptive Symptom Detection
Based on the extracted features, two steps are used to filter
out as many non-symptom windows as possible.

First, AMR is used to capture the windows with discrete
acoustic events. As shown in Figure 3, for an ambient noise
window, each frame has similar energy and thus when « is set
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to 0.5, its AMR is close to 1. For a window containing dis-
crete acoustic event (e.g., any respiratory symptom, shutting
the door, knocking on the desk), its AMR is relatively small
since there are only a few number of acoustic event frames in
the window, whose RMS values are much larger than those of
the ambient noise frames. Similarly, the AMR of a window
containing continuous acoustic event (e.g., talking or music)
is smaller than 1 but larger than that of the discrete acoustic
event window. Specifically, a talking window has an AMR of
0.3 to 0.5 (shown in Figure 3) since the voiced frames occupy
30% to 50% in a fluent speech [18]. Comparing Figure 3b
with Figure 3a, although the energy contained in the sampled
event frames decreases when a smartphone is put in the pants
pocket, for the windows in the same category (i.e., ambient
noise window, discrete acoustic event window or continu-
ous acoustic event window), their AMR values do not change
very much. Therefore, AMR is a robust window-level feature
to classify windows into different categories regardless of the
contexts of the phone.

Second, since a user may spend much of his/her time using
the smartphone in a public area (e.g., offices, classes), acous-
tic events made by other people around him/her may also be
captured by the phone. In order to filter out windows with
these events, ATR is used after the first step. According to
the laws of acoustic wave propagation, an acoustic wave will
lose more energy when it propagates further. Therefore, in the
smartphone, the recorded acoustic events made by the user
who is much closer to the phone will have more energy than
those made by the people around him/her. ATR reflects the
energy contained in an event, thus it can be used by a phone
to discern nearby events from distant events. As shown in
Figure 4, the ATR of a distant event window is much smaller
than that of a nearby event window, and thus the distant event
window can be filtered out by an ATR threshold ~.

However, v should not be set to a fixed value since the en-
ergy contained in an acoustic event captured by a phone will
be different under various contexts. For example, the ATR
of a window containing a user’s sneeze captured when the
phone is put in his/her pocket may not surpass the thresh-

tively.

old v which is designed based on acoustic samples collected
when the phone is put on the desk, but this window should
not be discarded as a window containing a sneeze made by
others. Thus ~ should be set adaptively to cope with different
contexts. Since a talking window can be detected by using
AMR (shown in Figure 3), we use it to determine . When
a window w 1is classified as a talking window, its mean RMS
7ms(w) is used to update the mean RMS of all the talking
windows 7ms as follows:

rms = rms + [ - [Fms(w) — 7ms] (1)

And then the ATR threshold ~ is calculated as:

y=mn-Tms @

In SymDetector, 5 and 7 are set to 0.5 and 1.2 respective-
ly based on our preliminary experimental results. According
to Equation 1 and 2, « will be adaptively changed based on
the variation of the contexts, so Symptom Detector can sift
out windows containing a user’s respiratory symptoms ro-
bustly. Figure 5 shows the ATR of the windows containing
respiratory symptoms made by a user (denoted as user) and
people around him (denoted as others) in three weeks in di-
fferent phone contexts. The phone was put on the desk for
the first week, in the user’s pants pocket for the second week
and in his backpack for the third week. As can be seen, al-
though the ATR of the window containing a certain type of
respiratory symptom varies in different phone contexts, the
ATR threshold also changes adaptively, which makes Symp-
tom Detector be able to discern respiratory symptoms made
by the user from others. As shown in Figure 5, when the
phone is put on the desk, all the respiratory symptoms made
by the user can be sifted out. For the respiratory symptoms
made by others, except for a few sneezes, all the others can
be filtered out correctly. When the phone is put in the user’s
pants pocket or backpack, except for a few sniffles and throat
clearing symptoms, all the other symptoms made by the user
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can be discerned from those made by others through the ATR
threshold. When a window is fed to Symptom Classifier, the
threshold ~, which reflects the current signal intensity level,
will also be recorded for further processing.

Symptom Classifier

In Symptom Detector, most noise windows and continuous
acoustic event windows are filtered out. However, since only
a few features are used there, some windows which contain
other discrete acoustic events rather than respiratory symp-
toms (e.g., shutting the door, knocking on the desk) will also
be preserved. In order to classify the preserved windows into
different categories (i.e., sneeze, cough, sniffle, throat clear-
ing and non-symptoms), in Symptom Classifier more features
are extracted and multi-level classifiers are designed.

Feature Extraction
Both time-domain and frequency-domain features are extract-
ed in Symptom Classifier.

Symptom Length (SL): As shown in Figure 6, SL measures
the length of frame set F, (F. = {fs, fs+1, -, fe}), which
is the largest continuous frame set covered by the accoustic
event. For a discrete acoustic event in window w, to decide

its F,, the maximum RMS frame f,, is located and put into
F, initially, then the frames before and after this frame are
continuously added into F?, until the frames whose RMS val-
ues are less than ¢ - 7ms(w) (4 is set to 0.5 in SymDetector)
are met.

As observed in Figure 2, most of the symptoms last for 0.1
to 0.6 seconds (i.e., 2 to 12 frames), and thus SL can be used
to discern the non-symptoms whose lengths are out of this
range. Also, obtaining frame set F, will save CPU and power
when calculating the resource-consuming frequency-domain
features since only frames in F, instead of frames in the en-
tire window, need to be considered.

Left to Right Ratio (LRR): LRR measures the ratio of the
area covered by the frames from fs to f,, to the area from
fm to fe. As shown in Figure 6, sneeze and sniffle’s LRR
values are larger than 1, while cough and throat clearing’s
LRR values are less than 1.

Relative Maximum RMS (RMR): As shown in Figure 3 and
Figure 6, sneeze and cough contain much more acoustic en-
ergy than sniffle and throat clearing. RMR is used to reflect
this difference and it is calculated as:

rmr(w) = max rms(f)
few v

where -y is the ATR threshold when window w is processed in
Symptom Detector. Instead of absolute RMS, relative RMS
is used to avoid the affect caused by different contexts.

Zero Crossing Rate (ZCR): Let sgn() denote the sign func-
tion which returns 1 for a positive argument, O for 0 and -1
for a negative argument. Then frame f’s ZCR [27] is:

Dieo |sgn(si) — sgn(si-1)|
2(n—1)

zer(f) =

ZCR is a good feature to detect percussive sounds. In Symp-
tom Classifier, the mean and variance of ZCR in F, are used
to discern the non-symptoms whose ZCR values are out of the
range of the ZCR values calculated from respiratory symp-
toms.

Spectral Centroid (SC): Let p; (: = 1,2, ..., N) denote the
normalized magnitude of the i-th frequency bin obtained by
using Fast Fourier Transform (FFT) on frame f. f’s SC [16]
is calculated as:

N .

_ Zi:l ¢ pg

sc(f) = —N 3
Zi:lpi

SC measures the centroid of the spectral energy distribution.

Bandwidth: Following the calculation of SC, f’s Bandwidth
[16] bw is calculated as:

Yo (i = se(f))? - p?
Zi]\;1 v}

bw(f) =
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Bandwidth measures the flatness of the FFT spectrum.

Ath-percentile Spectral Rolloff (SR): Given parameter A,
f’s SR is calculated as:

h
sr(\, f) =min(h| }_p} > 155 sz
i=1

SR indicates the frequency bin below which it contains \ per-
cent of the total spectral energy. It reflects how a frame’s
spectral energy distributes. For example, SR of a frame
whose energy mostly concentrates on low-frequency band
will be small even for a large A and SR of a high-frequency
frame will be large even for a small A. In SymDetector, A is
set to 10, 50 and 90 when this feature is extracted.

The mean and variance of these spectral features of the frames
in F, are calculated as window-level features.

Multi-level Classification

After extracting the above features from acoustic event win-
dows, a classifier can be trained to classify respiratory symp-
toms. However, although most ambient noise windows and
continuous acoustic event windows are filtered out in Symp-
tom Detector, many windows which do not actually contain
respiratory symptoms are still preserved (e.g., shutting the
door, knocking on the desk, turning the book). Since in peo-
ple’s daily lives, these events occur much more than respi-
ratory symptoms, directly using a classifier on all the win-
dows preserved in Symptom Detector will cause the Class
Imbalance Problem [14]. Therefore, a coarse classifier is
designed in Symptom Classifier to filter out as many non-
symptom windows as possible and then Support Vector Ma-
chine (SVM) is used to classify all the respiratory symptoms.

As shown in Figure 7, in the coarse classifier, RMR is used to
classify the events as two categories due to the higher energy
level of sneeze and cough than that of sniffle and throat clear-
ing (shown in Figure 3, Figure 5 and Figure 6). Then SL and
ZCR are used since they are time-domain features and many
non-symptoms can be discerned by using them. For exam-
ple, as observed in our experimental data, the sound made
when one puts his coffee cup on the desk has low SL and the
sound of shutting a door has low ZCR. Lastly, SR with A\ =
50 is used to filter out high-frequency events in the category
of sneeze and cough since both of them do not contain many
high-frequency energy.

After identifying most of the non-symptom windows and
classifying the remaining as two categories in coarse classi-
fier, a finer classifier is used on both categories to classi-
fy the respiratory symptoms. In machine learning, SVM is
shown to be an effective supervised learning technique and
has been used in various classification problems [11, 5, 29].
Therefore, we use SVM as the second-level classification in
SymDetector. However, SVM is originally designed for bi-
nary classification. In our system, after running the coarse
classifier, three types of sounds need to be classified in each
category (i.e., sneeze, cough and non-symptom in one cate-
gory; sniffle, throat clearing and non-symptom in the other
category). Thus, the basic SVM technique needs to be ex-
tended to classify multiple types of sounds. One-against-
all [2] and one-against-one [9] are two well-known strate-
gies of using binary SVM for multiclass classification. For
k classes, although the number of binary SVMs construct-
ed by one-against-one (i.e., k(k — 1)/2) is larger than that
of one-against-all (i.e., k), one-against-one yields higher cla-
ssification accuracy in general [11]. Since in our classifica-
tion problem, each category only has 3 types of sounds, we
use one-against-one strategy and use Radial Basic Function
(RBF) as the kernel function when training the binary SVMs.

There are some other classification schemes which can also
be used for symptom classification, such as Gaussian Mix-
ture Models (GMM) [8], k-nearest Neighbors (KNN) [17],
Hidden Markov Models (HMM) [1] and Random Forest (RF)
[15]. HMM and RF are used in [1] and [15] respectively to
detect coughs, and we will compare our system with theirs in
the performance evaluations.

Symptom Recorder

The classified respiratory symptoms are recorded in this com-
ponent. Since overlapped windows are used in SymDetector,
a respiratory symptom may be recorded twice. To remove
redundancy, fs and f., which are obtained when extracting
SL, are recorded in terms of system time, and if two record-
ed respiratory symptoms are interleaved, the one with shorter
SL will be discarded. The recorded respiratory symptoms
can be accessed by the user locally or shared with medical
researchers with the permission of the user.

IMPLEMENTATION

SymDetector is implemented on Samsung’s smartphone
Galaxy S3, using Android OS 4.2.2. Acoustic samples are
continuously read by a sampling thread from the phone’s
built-in microphone at 16 KHz. After 64K samples (i.e., 4
seconds) are obtained, they are fed to a processing thread.
The sampling thread will start building the next window from
the 3rd second of the previous one so that these two windows
will have 1-second overlap. The processing thread segments
the window into frames of 800 samples and calculates each
frame’s RMS to get the window’s AMR and ATR. Symptom
Detector is implemented to decide if this window should be
discarded or preserved. If it is detected as a talking win-
dow, ATR threshold ~y will be updated based on Equation 1
and 2 before the window is discarded. If the window is pre-
served, Symptom Classifier is implemented to classify it into
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igure 9: The percentage of respiratory symp-

toms that are recorded when differen AMR
thresholds are used based on the preliminary
dataset.

one of the categories (i.e., sneeze, cough, sniffle, throat clear-
ing or non-symptoms). The occurrence time and features of
the classified event are recorded by a recording thread. Then
the processed window is discarded and the processing thread
ends. SymDetector does not keep any raw acoustic data and
it only buffers 4-second data during the process. The system
time when a window is fetched is recorded to infer the start-
ing and ending time of the respiratory symptom if it exists in
the window.

In the processing thread, if a window is preserved after Symp-
tom Detector, all its time-domain and frequency-domain fea-
tures mentioned before will be extracted. Then, a coarse cla-
ssifier is used to classify the window into one of the two cat-
egories as shown in Figure 7, and 6 binary SVMs are imple-
mented (3 for each category) to further classify the window
as one of the symptoms or non-symptom. In order to save the
smartphone’s CPU and power, we use Libsvm [4] to train the
6 SVMs offline, and then the support vectors and the coeffi-
cients are provided to the processing thread for classification.

SymDetector is easy to use since it is designed to work in
an unobtrusive way. After the program is started, the user
can use the phone just in his/her normal pattern and no spe-
cial instructions need to be followed. SymDetector will stop
when the user is answering or making a phone call and re-
sume after that. We provide the user an access to his/her
recorded data, so the user can either track his/her respirato-
ry symptoms during a certain period locally or upload his/her
respiratory symptom data to a trustworthy server.

PERFORMANCE EVALUATIONS
In this section, we evaluate the performance of SymDetector
based on the data collected in real experiments.

Table 1: Overview of the experiment and collected data.

Experimental Setup

We have two datasets: a preliminary dataset collected from
5 users which is used to study the features extracted from
respiratory symptoms and determine the parameters used in
our system, and a dataset collected from 16 users to evaluate
the performance of our system.

The preliminary acoustic dataset is collected from 5 users.
Each user was given a Galaxy S3 phone, which was carried
by them and recorded all the acoustic data around them from
9am to 12pm every experimental day as wav files. The expe-
riment lasted 7 days and after the experiment, a total length
of 105-hour audio clips were collected. We asked the users
to listen to the audio files to label all the sound events (e.g.,
conversations, respiratory symptoms made by themselves and
others). The labeled data is then used to study the features
extracted from respiratory symptoms (e.g., the distribution of
symptom length in Figure 2) and further to determine the pa-
rameters used in SymDetector (e.g., v,  and ) used in Symp-
tom Detector).

This preliminary dataset is relatively small. This is because
increasing the number of users and recording their acous-
tic data and then listening to them to label the ground-truth
symptoms is very difficult and impractical. First, it is hard
to recruit users to participate in the experiment because they
may feel uncomfortable when knowing that all their acous-
tic data (including their daily conversation) will be recorded.
Second, it will cost much time and labor to get the ground
truth because all the audio files must be played and listened in
order to label respiratory symptoms and other acoustic events
from the collected audio data. Third, recording all the acous-
tic data as wav or other playable audio files will consume



much storage and this will make it difficult to conduct the ex-
periment continuously for a long time because of the limited
storage in smartphones.

To overcome these problems, we design a data collection
scheme to reduce the audio data to be recorded without miss-
ing respiratory symptoms. Since the discrete acoustic events
(e.g., respiratory symptoms) can be distinguished from the
ambient noises and continuous acoustic events (e.g., con-
versations) by using AMR extracted in Symptom Detector
(shown in Figure 3), we can reduce the audio data by only
recording the discrete acoustic events. In our experiment,
SymDetector is modified not to detect respiratory symptoms
directly. Instead, it records the 4-second window audio clip-
s and the cross-validated training and testing are done of-
fline. For each 4-second window sampled in Audio Sam-
pler, its AMR value is calculated in real time. If the AMR
is below a threshold, this window will be recorded as a wav
file to provide ground truth; otherwise, it will be discarded.
As shown in Figure 9, the experiment based on the prelim-
inary dataset indicates that all the respiratory symptoms can
be safely recorded if the AMR threshold is set appropriately
(it is set to 0.5 in our data collection). In the end, we col-
lect the data from users and listen to all these 4-second audio
files to label respiratory symptoms and other acoustic events
manually.

Using the above scheme, we recruited 16 users and collect-
ed our second dataset. These users were asked to use the
smartphone with SymDetector running for at least 6 hours a
day. The numbers of respiratory symptoms and other acoustic
events (called non-symptoms) made by each user are shown
in Table 1. Among the 16 users ranging from 18 to 30 years
old (6 females and 10 males), 12 are graduate students who
spend most of their daily time in their offices. During the ex-
periment, two users (user 6 and user 10) reported that they
happened to catch a cold and two users (user 2 and user 4)
reported that they were troubled with pollen allergy. Since
SymbDetector is designed for indoor environment, in our ex-
periment, the audio data is only collected from two common
indoor scenarios (i.e., office and home). As shown in column
3 of Table 1, some users only use it in their offices during the
day (office) and the others are asked to use SymDetector at
both offices and home (office/home). As can been seen from
Table 1, our design largely reduces the audio data recorded
for ground truth. For example, even for a 28-day experiment
(user 1), only 1051 audio clips (i.e., 136MB audio data) are
recorded. This also reduces the time spent on labeling the
ground-truth events. We only spent less than 15 hours to la-
bel all the respiratory symptoms monitored in 204 days.

After gathering data from users and labeling all the acous-
tic events, the classification performance of SymDetector is
cross validated under different conditions. Since the collect-
ed symptoms in our dataset are not evenly distributed among
users, we use 5-fold stratified cross validation. The acoustic
windows are randomly split into 5 partitions, each of which
has the same number of sneezes, coughs, sniffles, throat clear-
ing symptoms and non-symptoms. Each time, data from 4
partitions is used as training data to train the coarse classifier
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Figure 10: TPR and PPV of each type of acoustic event under
different working conditions.

and SVM classifier, and data in the remaining partition is used
for testing. The training and testing are done 5 times and each
partition is used exactly once as the testing data. The entire
process of stratified cross validation is then repeated 10 times
and the classification results from each time are averaged to
evaluate SymDetector’s performance.

Overall Performance

Table 2 shows the overall detection results of SymDetector
in terms of True Positive Rate (TPR) and Positive Predictive
Value (PPV). For a certain type of event, its TPR is defined as
the ratio of the number of true positives (i.e., the events which
are correctly identified as such type) to the number of actual
positives (i.e., such type of events which are actually in the
test set) and its PPV is defined as the ratio of the number of
true positives to the sum of the number of true positives and
false positives (i.e., the events which are identified as such
type but actually not). As can be seen, more than 83% of
respiratory symptoms are correctly classified and 99.0% of
non-symptoms are detected. The PPV value of respiratory
symptoms are larger than 87%, indicating that only a few of
acoustic events are misclassified as a certain type of respira-
tory symptom. Comparing with the other types of respirato-
ry symptoms, throat clearing is detected more accurately and
has fewer false positives due to its low-frequency character-
istic. The TPR and PPV of sniffle are not as large as those
of the other respiratory symptoms. This is because the dura-
tion of sniffle is very short and its frames contain little energy,
which makes it difficult to be distinguished from some non-
symptoms. Sneeze contains much more energy than many
other acoustic events occurred in a user’s daily life. There-
fore, only a small number of acoustic events are falsely clas-
sified as sneeze and it has a large PPV value (90.2%).

Since there is no similar work on detection of all these four
types of respiratory symptoms, we only consider cough and
compare SymDetector with two cough detection systems (de-
noted as LCM [1] and CoughSense [15] respectively). LCM
uses Hidden Markov Models to detect coughs based on the
audio data collected from a microphone worn around a user’s
neck. CoughSense uses a smartphone to record the audio
data and uses Random Forest to detect coughs. As shown in
Figure 8, SymDetector has larger TPR and PPV than LCM



Symptom TPR PPV
Sneeze 0.830 0.902
Cough 0.859 0.873
Sniffle 0.845 0.891

Throat clearing 0.889 0.925
Non-symptoms 0.990 0.987

Table 2: The detection results of respiratory symptoms based
on the data collected from 16 users and 204 days.

and CoughSense. This is because both time-domain and
frequency-domain features are used in SymDetector and these
features are effective in cough detection, while in LCM and
CoughSense only frequency-domain features are used. Also,
SymDetector is designed to work in different contexts, while
LCM and CoughSense can only work when the microphone
is put in a specific position. Our experimental data is collect-
ed in various contexts, and thus SymDetector performs better
than the other two systems.

Working Conditions

As illustrated before, two groups of users are asked to test
SymbDetector under different working conditions. Comparing
with office, in office/home, the phone’s working condition is
more complicated, and thus more non-symptoms are recorded
when a phone works in office/home. As observed in Table 1,
for a 7-day experiment, user 10 and 15 (office/home) collect-
ed more non-symptoms than the others (office). To compare
SymbDetector’s performances under these two working con-
ditions, data collected in office and office/home is analyzed
respectively and Figure 10 shows their detection results on
sneeze, cough, sniffle, throat clearing and non-symptoms (de-
noted as sz, ¢, sf, t and n respectively). As observed in Figure
10a, more than 80% of the respiratory symptoms in each type
are correctly detected under both working conditions. Com-
paring Figure 10a with Figure 10b, for each type of respi-
ratory symptom, its TPR almost remains the same under di-
fferent working conditions, but its PPV is higher in office than
in office/home. This is because more different types of non-
symptoms occur in office/home than in office, which results in
more non-symptoms being misclassified as symptoms.

Phone Contexts

In order to evaluate SymDetector’s performance in various
phone contexts, we collected three more weeks’ data from
user 1. For each week, we asked user 1 to put the phone on
the desk, in his pants pocket and in his backpack (the back-
pack was left close to the user during his working) respective-
ly (denoted as desk, pants pocket and backpack respectively).
Due to the small scale of our dataset, we train the classifiers
based on user 1’s acoustic data collected in Table 1 and show
the detection results in Figure 11. As observed in Figure 11a,
although the TPR values of all four types of respiratory symp-
toms in pants pocket and backpack are smaller than those of
desk, more than 75% of sneezes and coughs and more than
55 % of sniffles and throat clearing symptoms in pants pock-
et and backpack are correctly detected. In pants pocket and
backpack, comparing with sneezes and coughs, less sniffles
and throat clearing symptoms are correctly detected because
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Figure 11: TPR and PPV of each type of acoustic event in
different phone contexts.

Component CPU usage | Power consumption
Audio Sampler 1.67% 621.72mlJ
Symptom Detector 1.13% 130.28m)J
Symptom Classifier 2.73% 326.35mJ
Symptom Recorder 0.45% 105.44m)J

Table 3: CPU usage and power consumption of each compo-
nent in SymDetector when a respiratory symptom window is
processed.

these two types of symptoms contain less acoustic energy,
which makes them more likely to be filtered out in Symp-
tom Detector. As shown in Figure 11b, similar to TPR, for
each type of respiratory symptom, its PPV in pants pocket
and backpack is smaller than that of desk. However, com-
paring Figure 11b with Figure 11a, the PPV value difference
between pants pocket (or backpack) and desk for a certain
type of respiratory symptom is smaller than the correspond-
ing TPR value difference. This is because in the extracted
features, except for RMR, all the other features are not relat-
ed to the amount of energy contained in the acoustic events.
Although the energy contained in each respiratory symptom
in pants pocket and backpack is less than that of desk, it is
still hard for a non-symptom to be misclassified as a respira-
tory symptom.

CPU Usage and Power Consumption

Table 3 shows the average CPU usage and power consump-
tion of each component in SymDetector when a respirato-
ry symptom window is processed. As can be seen, Symp-
tom Classifier consumes more CPU (2.73%) than any other
component. This is because it extracts many time-domain
and frequency-domain features and uses multi-level classi-
fiers to detect respiratory symptoms. Comparatively, Symp-
tom Detector only extracts three time-domain features and
thus it consumes little CPU (1.13%) and power (130.28 mJ).
In SymDetector, low-power Symptom Detector is used to
process all the windows and only a few number of windows
which contain discrete acoustic events are processed by the
resource-consuming Symptom Classifier.

Since CoughSense is also designed on smartphone, we com-
pare the average CPU usage and the power consumption of
SymDetector and CoughSense when different windows are



CPU usage
Ambient
noise
SymDetector| 2.91%
CoughSense | 10.36%

Power consumption
Amblent Cough
noise
5.72% 0.73] 1.25J
13.28% 1.57]) 1.93J

System Cough

Table 4: CPU usage and power consumption of SymDetector
and CoughSense when processing an ambient noise window
and a cough window.

processed, and the results are shown in Table 4. As can be
seen, since CoughSense needs to extract frequency-domain
features for all the frames in a window, it consumes more
CPU and power than SymDetector in processing either an am-
bient noise window or a cough window. Our experimental re-
sult shows that on average, SymDetecor consumes 803.53 mJ
for processing a 4-second window and it can work for more
than 20 hours on a fully charged phone.

DISCUSSIONS

In the design of SymDetector, we consider users’ privacy,
power consumption and phone context to make it practical
to detect and record users’ respiratory symptoms for a long
time. Although users with respiratory diseases may have
many symptoms and the symptoms detected in our current
work may not be sufficient to exactly infer whether a user has
got certain disease or not, detecting these 4 types of sound-
related symptoms, which are commonly observed in many
respiratory diseases, will provide useful information for the
medical researchers. For example, these symptoms have been
collected in many surveillance systems to monitor the spread
of infectious diseases like flu [6]. Also, continuously moni-
toring a specific user’s symptoms and comparing them with
his/her historical information will help to detect some poten-
tial disease in an early stage.

In order to make SymDetector generalized to detect respira-
tory symptoms, Symptom Classifier is trained based on the
symptom data collected from all the users in our experiment.
However, features of the respiratory symptoms are dependent
on the users, and some of the features are observed to be di-
fferent among different users. For example, some users may
sneeze loudly while others may sneeze relatively softly. Also,
for a specific user, features extracted from his/her respirato-
ry symptoms usually remain stable. Thus, we believe that the
performance of SymDetector can be improved if the classifier
is trained by using the user’s own symptom data. We will de-
sign more practical schemes in the future to collect more data
from users, and train the classifiers used in different users’
SymDetector based on their own symptom features.

The current SymDetector is designed to work in indoor envi-
ronment, where the ambient noise is relatively simple and in-
variant. However, in outdoor environment, the ambient noise
is much more complicated than that indoor and noises like
the sounds of birds, winds or vehicles may be collected in
the acoustic data as well. These noises are hard to be filtered
out in our current system, which makes the symptom detec-
tion even harder since the symptoms may be overlapped with
these unpredictable ambient noises. While users will spend

much of their time indoor, they may also go outdoor some-
times for walk, game or meal. As our future work, we will
study the ambient noise in outdoor environment and make
SymDetector work both indoor and outdoor.

RELATED WORK

By leveraging smartphones, many works have been proposed
to provide users health related applications. Shahriar et al.
[24] equipped a pair of sensors in the smartphone’s earphone
to monitor the user’s heart rate and suggest music for the
user to maintain the heart rate. Keally ez al. [12] combined
TinyOS motes and Android smartphones together to build
Practical Body Networking (PBN) for recognizing people’s
daily activities. By processing the sensor data continuously
read from a smartphone’s accelerometer, Agata and Robert
[3] designed an algorithm for walk detection and step count-
ing. Having the similar goal with these research, we also
exploit the ubiquity of smartphones to obtain users’ health
information.

As a low-cost and common sensor on all kinds of mobile
phones, the microphone has been exploited in many appli-
cations. In [19], Hong et al. designed StressSense to evalu-
ate a user’s stress level by analyzing his/her speech. How-
ever, to collect the user’s speech, the phone has to be at-
tached to the specific part of the user’s body. SoundSense
[20], which uses both supervised and unsupervised learning
techniques to detect and classify accoustic events occurred
in one’s daily life, considers various contexts of the phone,
but it consumes lots of power since it needs to extract many
frequency-domain features for each frame. By analyzing the
acoustic data sensed during a user’s sleep, Tian et al. [10] de-
signed iSleep to evaluate the user’s sleeping quality in terms
of the number of his/her body movement, cough and snore at
night. However, their techniques cannot be directly applied
in SymDetector since they assume that there are no other
acoustic events during one’s sleep except body movement,
cough and snore, which is quite different from the environ-
ment where SymDetector works.

Audio based systems have been designed to collect people’s
health information in many previous works. In [21] and [22],
HMM based schemes are proposed to detect cough from con-
tinuous audio record. In [26] and [31], audio data is collected
to analyze the lung sounds. However, these systems cannot
work in real time. In [25], a mobile sensing system is pro-
posed to detect various non-speech body sounds, but the users
have to wear specific sensors. Random Forest (RF) classi-
fier is implemented in [15] to detect a user’s cough. In [32],
BodyScope is designed to detect 12 non-verbal sounds includ-
ing cough. However, in these systems, the user has to wear
the phone (or microphone) around his/her neck. Also, the
system in [15] consumes much CPU and power since it needs
to calculate audio spectrogram for the entire audio sequence.

CONCLUSION

In this paper, we designed SymDetector, a smartphone based
application which can unobtrusively detect a user’s acous-
tic events related to respiratory symptoms, including sneeze,
cough, sniffle and throat clearing. Several practical issues,



such as users’ privacy concerns about their acoustic data, re-
source constraints of the smartphone and different contexts of
the smartphone, are considered in developing SymDetector.
We have implemented SymDetector on Galaxy S3 and eval-
uated its performance in real experiments involving 16 users
and 204 days. The experimental results show that SymDetec-
tor can detect the respiratory symptoms with high accuracy
under various conditions.
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