
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING 1

Cooperative Data Offload in Opportunistic
Networks: From Mobile Devices

to Infrastructure
Zongqing Lu, Member, IEEE, Xiao Sun, and Thomas La Porta, Fellow, IEEE

Abstract— Opportunistic mobile networks consisting of inter-
mittently connected mobile devices have been exploited for vari-
ous applications, such as computational offloading and mitigating
cellular traffic load. In contrast to existing work, in this paper,
we focus on cooperatively offloading data among mobile devices
to maximally improve the probability of data delivery from a
mobile device to intermittently connected infrastructure within
a given time constraint, which is referred to as the cooperative
offloading problem. Unfortunately, the estimation of data delivery
probability over an opportunistic path is difficult and cooperative
offloading is NP-hard. To this end, we first propose a probabilistic
framework that provides the estimation of such probability.
Based on the proposed probabilistic framework, we design a
heuristic algorithm to solve cooperative offloading at a low com-
putation cost. Due to the lack of global information, a distributed
algorithm is further proposed. The performance of the proposed
approaches is evaluated based on both synthetic networks and
real traces. Experimental results show that the probabilistic
framework can accurately estimate the data delivery probability,
cooperative offloading greatly improves the delivery probability,
the heuristic algorithm approximates the optimum, and the
performance of both the heuristic algorithm and distributed
algorithm outperforms other approaches.

Index Terms— Opportunistic mobile networks, cooperative
data offload.

I. INTRODUCTION

OPPORTUNISTIC mobile networks consist of mobile
devices which are equipped with short-range radios

(e.g. Bluetooth, WiFi). Mobile devices intermittently contact
each other without the support of infrastructure when they
are within range of each other. Most research work on
such networks focuses on data forwarding [9], [30] and data
caching [11], [40]. Other research work focuses on explor-
ing opportunistic mobile networks for various applications.
Shi et al. [29] proposed to enable remote computing among
mobile devices so as to speedup computing and conserve
energy. Liu et al. [20] explored the practical potential of
opportunistic networks among smartphones. Lu et al. [21] built
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a system to network smartphones opportunistically using
WiFi for providing communications in disaster recovery.
Han et al. [12] proposed to migrate the traffic from cellular net-
works to opportunistic communications between smartphones,
coping with the explosive traffic demands and limited capacity
provided by cellular networks.

In this paper, we focus on exploiting opportunistic com-
munications for offloading data which is to be transmitted
from a mobile device to intermittently connected infrastructure
(e.g., a remote server). Specifically, besides directly transmit-
ting data to infrastructure, the mobile device can also transfer
data to other devices and then let these devices transmit
the data to infrastructure so as to improve the probability
of successful data delivery. Unlike mobile cloud computing,
which assumes mobile devices are always connected to the
cloud via cellular networks and the decision of offloading is
mainly based on energy consumption or application execution
time [4], [5], [34], [37], we consider the data offloading sce-
nario where mobile devices only have intermittent connections
with infrastructure, and mobile devices collaborate to transmit
data to infrastructure.

There are several application scenarios. For example, in
vehicular ad hoc networks, instead of deploying more roadside
units to increase the coverage, a vehicle can seek help from
other vehicles for transmitting data to roadside units when it
will not meet roadside units on its current route or it cannot
completely transfer the data to roadside units due to their
transient contact. Therefore, such a cooperative data offloading
scheme that takes advantage of the communication capability
of other vehicles can potentially reduce the cost of building
more roadside units, while maintaining the desired coverage.
In disaster recovery, due to the very limited coverage and
bandwidth of deployed mobile cellular towers, data can be
fragmented and sent to multiple users for a better reachability
to the mobile cellular towers.

In opportunistic mobile networks, data replication [30] and
data redundancy [14] are normally employed to improve
the probability of successful data delivery by increasing the
amount of transmitted data. However, both techniques lead to
high bandwidth overhead, which can be severe for large data
transfer and costly for cellular networks. Unlike existing work,
we focus on offloading data segments to other mobile devices
so as to improve the probability of successful data delivery.
We rely on an important observation that the probability of
successful data delivery over the opportunistic path drops
dramatically when the size of transmitted data is large. In such
scenarios, offloading data segments can yield a better delivery
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probability than data replication or data redundancy, in addi-
tion to not incurring additional bandwidth overhead. However,
maximally improving the delivery probability by data offload-
ing, which is referred to as the cooperative offloading problem,
turns out to be non-trivial and NP-hard. Although cooperative
offloading admits PTAS (Polynomial Time Approximation
Scheme), PTAS is still not affordable for mobile devices due to
its incurred computation overhead of data delivery probability.

To deal with this, we design a centralized heuristic algorithm
based on the proposed probabilistic framework to solve coop-
erative offloading. To cope with the lack of global information,
we further propose a distributed algorithm. Through extensive
simulations on synthetic networks and experiments on real
traces, we demonstrate that cooperative offloading can greatly
improve the data delivery probability, the heuristic algorithm
approximates the optimum, and the performance of both
the centralized heuristic algorithm and distributed algorithm
outperforms other approaches. The main contributions of this
paper can be summarized as follows.

• We propose a probabilistic framework that provides the
estimation of data delivery probability over the oppor-
tunistic path, considering both data size and contact
duration. To the best of our knowledge, this is the first
work that gives such estimation without any restrictions.

• We design a heuristic algorithm that performs path
allocation and data assignment by carefully considering
opportunistic contact probability and path capacity. The
algorithm approximates the optimum at a much lower
computational cost than PTAS.

• We design a distributed algorithm which employs cri-
terion assignment, real-time adjustment and assignment
update to make data offloading decisions at runtime.
Although it only exploits paths no more than two hops
for data forwarding, its performance is comparable to that
of the heuristic algorithm.

The rest of this paper is organized as follows. Section II
reviews related work and Section III gives the overview. The
probabilistic framework is presented in Section IV, followed
by the heuristic algorithm and the distributed algorithm in
Section V and Section VI, respectively. Section VII evaluates
the performance of the proposed approaches and Section VIII
concludes the paper.

II. RELATED WORK

Mobile opportunistic networks have been studied mainly
for data forwarding, where mobile nodes carry and forward
messages upon intermittent node contacts. The key problem is
how to select appropriate relays such that messages can be for-
warded to destinations quickly considering forwarding costs.
Many forwarding schemes have been proposed from different
perspectives, such as representative strategies including [8],
[9], [31], contact capability based schemes including [35], and
social concepts based schemes including [6], [13], [23], [24],
[26], [38]. In addition, forwarding is addressed as a resource
allocation problem in [2] and forwarding capability of nodes
under energy constraints is investigated in [3]. However, most
research work on forwarding in mobile opportunistic networks
is based on an assumption that nodes can completely transfer a
data item during a node contact. Nevertheless, this assumption

is not valid in some cases, for example, when node contacts
are transient (e.g., in vehicular ad hoc networks) or when data
items are large.

Unlike the existing work, in this paper, we relax this
assumption and take contact duration into consideration. The
selection of forwarding path(s) for a data item is determined
based on the size of the data item; i.e., we choose the
path(s) with the maximum probability of successful deliv-
ery of the data item by incorporating data fragmentation
(i.e., the data item can be fragmented and the segments can
be forwarded over different paths). Note that social relations
(e.g., community) that are exploited to characterize node con-
tacts cannot provide the estimation of data delivery probability.

The explosive growth of mobile devices (such as smart-
phones and tablets) has stimulated research on exploring
mobile opportunistic networks for various applications. These
applications can be generally classified into three categories:
mitigating cellular traffic load, offloading computational tasks
and information dissemination. The potential of mobile oppor-
tunistic networks in terms of reducing cellular traffic load was
investigated in [20]. The incentive mechanism was studied
in [39] and some solutions were proposed in [12], [27],
[28], and [33]. Computational offloading among intermittently
connected mobile devices was investigated in [17] and [29].
Information dissemination in mobile opportunistic networks
was considered based on mobility and community in [32]
and [25], respectively. Unlike the existing work, in this
paper, we investigate application scenarios in which mobile
devices cooperatively transmit data to intermittently connected
infrastructure so as to improve the probability of data delivery.

III. OVERVIEW

A. Network Model

Consider a network, where mobile nodes opportunistically
contact each other and each node may intermittently connect
with infrastructure. Then, mobile nodes and infrastructure
together form an opportunistic mobile network. To simplify
the notation and the presentation of the paper, infrastructure
is seen as a special node, and intermittent connections between
nodes and infrastructure are seen as node contacts. In the
network, for two nodes, an edge exists between them only
if they opportunistically contact each other. With regard to
data offloading, each node can exploit other nodes for data
transmission. Specifically, in addition to transmitting a data
item to the infrastructure along one particular path, the node
can also select multiple paths to the infrastructure, and each
path can be used to carry part of the data item.

B. Basic Idea

In an opportunistic mobile network, given the pattern of
contact frequency and contact duration between nodes, we
first investigate the relation between data size and successful
delivery probability for given path and time constraint. Intu-
itively, since the size of data that can be transmitted during a
node contact is restricted by the contact duration, data with
small size can be easily transmitted over the opportunistic
path; data with large size may require multiple node contacts
and thus not be completely transmitted. As shown in Figure 1,
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Fig. 1. Relation between data size and successful delivery probability for a
given pair of path and time constraint.

Fig. 2. A simple scenario where node u and v are connected by two paths.
Table shows the delivery probabilities of different data sizes over the paths,
taken from Fig. 1.

which is obtained for a given pair of path and time constraint
(taken from the experiments in Section VII), the probability
of successful delivery exponentially decreases when the data
size increases. In other words, the delivery probability can
exponentially increase if less data is transmitted over the
opportunistic path. Based on this important observation, it is
concluded that a node may obtain a better delivery probability
of a data item if it selects multiple paths to the destination and
each path carries a part of the data item.

To better elaborate on this motivation, let us consider a
simple example as shown in Figure 2, where node u needs
to send a data item S (we abuse the notation a little and let
S also denote the size of the data item) to v. Let us use
the real delivery probabilities over an opportunistic path as
labeled in Figure 1, and S = 20. Assume paths i and j have
the same delivery probability for S and S/2. If u transmits
S to v over path i or j, the delivery probability is 0.23.
If each path carries a replication of S, the probability is∑2

n=1

(2
n

)
0.23n0.772−n = 0.407, considering all failures are

Bernoulli. Instead, if u sends S/2 along each path, the delivery
probability is 0.71 × 0.71 = 0.504, which is more than two
times of the probability when S is sent over individual path.

It may be surprising that sending data segments along
multiple paths can achieve a better delivery probability,
even better than sending replications along multiple paths.
Although increasingly sending replications over multiple paths
may eventually yield better performance, this approach is
restricted by available paths and incurs a cost of multiplied
network resources. In this example, sending S over four paths
between u and v will result in the delivery probability of∑4

n=1

(4
n

)
0.23n0.774−n > 0.504, but at the cost of four times

of network traffic and thus bandwidth overhead, not to men-
tion requiring four paths between the source and destination.
Moreover, applying data redundancy (e.g., erasure coding) also
incurs r (replication factor) times of network resources and
may or may not be beneficial [14].

Therefore, in this paper, instead of data replication or data
redundancy, we focus on maximally improving the proba-
bility of data delivery by sending data segments through
multiple paths (i.e., offloading data segments to other nodes),

which leads to no additional network overhead and better
performance; i.e., we choose the path(s) that has or have the
maximum probability of data delivery, considering sending
data fragments via multiple paths.

C. Problem Statement
Suppose node u needs to transmit a data item S to node v

within time constraint T . The cooperative offloading problem
is defined as to maximize the probability of successful delivery
of S within T by offloading data among opportunistically
connected nodes, where S can be fragmented into different
segments and each segment is transmitted over different path
(i.e., each path at most carries one segment). Then, cooperative
offloading can be mathematically formulated as

max
m∏

i=1

n∏

j=1

P (Si, j)xi,j

s.t.
m∑

i=1

Si = S, m ∈ {1, 2, · · · , n},

n∑

j=1

xi,j = 1,
m∑

i=1

xi,j ∈ {0, 1}, xi,j ∈ {0, 1}, (1)

where n is the number of paths between u and v, m is
the number of data segments, P (Si, j) is the probability
that node u can transmit segment i with size Si to node v
within T along path j, xi,j = 1 if segment i is assigned to
path j, otherwise xi,j = 0. Moreover,

∑n
j=1 xi,j = 1 ensures

that each segment is assigned once, and
∑m

i=1 xi,j ∈ {0, 1}
ensures that each path carries at most one segment. Thus, the
main problem of cooperative offloading is determining how to
fragment the data item (including the number of segments and
the size of each segment) and on which path to transmit each
segment so as to maximize the successful delivery probability
of the entire data item before its deadline. Thus, it is a joint
optimization of the number of data segments, the size of each
segment, and the selection of path for each segment. Although
the formulation of cooperative offloading is straightforward, it
turns out to be NP-hard.

D. NP-Hardness
The NP-hardness of cooperative offloading can be proven by

reduction to the minimization knapsack problem. In coopera-
tive offloading, maximizing

∏m
i=1

∏n
j=1 P (Si, j)xi,j is equiv-

alent to minimizing
m∑

i=1

n∑

j=1

− log P (Si, j)xi,j ,

where − logP (Si, j) > 0 since 0 < P (Si, j) < 1. For
a pair of segment i and path j, it has a positive value of
− logP (Si, j) and a size Si. Therefore, cooperative offloading
can be rewritten as:

min
mn∑

k=1

vkxk

s.t.
mn∑

k=1

skxk ≥ S, xk ∈ {0, 1},
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where vk and sk respectively correspond the positive value
and the size of a pair of segment and path. This is the
minimization knapsack problem, which is NP-hard, and thus
cooperative offloading is also NP-hard. Although cooperative
offloading also admits PTAS (Polynomial Time Approxima-
tion Scheme) as the minimization knapsack problem, PTAS for
cooperative offloading requires the knowledge of the value (the
probability) for any pair of arbitrary data segment and path.
That is, assuming the size of a data item is S, it needs
to iteratively calculate the probability of any data segment
smaller than or equal to S for every path between source and
destination. However, in opportunistic mobile networks, the
estimation of such probability requires high computation as
we will discuss in Section IV. Since all the computation needs
to be performed on the source node (i.e., a mobile device) that
has a limited computation capability, PTAS is not affordable
for mobile devices and thus we design better algorithms.

IV. PROBABILISTIC FRAMEWORK

In opportunistic mobile networks, even the estimation of
the delivery probability of a data item along a particular
path is hard. Thus, in this section, we propose a probabilistic
framework to estimate such probability based on node contact
pattern. The existing work [14], [40] simplifies the estimation
by considering only one node contact along an opportunistic
path before the deadline and thus severely underestimates the
data delivery probability. To cope with this, we consider an
arbitrary number of node contacts, and thereby our framework
can accurately estimate the probability.

In opportunistic mobile networks, contact patterns between
nodes have been well analyzed. Similar to [2] and [10],
we model the contact process between each pair of nodes
as the independent Poisson process. This modeling has been
experimentally validated in [10]. Moreover, unlike [18], [19]
that assume only a fixed amount of data can be transferred
during a node contact, or [10], [35] that assume an arbitrary
size of data can be sent during a node contact, we do not make
such assumptions; i.e. the data amount that can be transmitted
during a node contact depends on the contact duration as
in [14] and [40]. In [14] and [40], the data amount that can
be transmitted between nodes is estimated based on single
node contact. However, given a time constraint, nodes may
contact each other multiple times and thus such an estimation
is not technically sound. Therefore, to accurately estimate
the delivery probability, we consider the data amount that is
brought by any arbitrary number of contacts between nodes
within a time constraint. Moreover, similar to [40], we model
contact duration between each pair of nodes as the Pareto
distribution (based on per node pair statistics). Note that
the distribution of contact frequency and contact duration is
heterogeneous across different pairs of nodes; i.e., each pair
of nodes has specific parameters for its distributions.

In the following, we first introduce opportunistic contact
probability and data transfer probability, and then based on
these, we show how to calculate data delivery probability.

A. Opportunistic Contact Probability
Since node contacts are independent Poisson processes, let

random variable T1 represent inter-contact duration between

node u and v, which follows an Exponential distribution with
rate parameter λ1, i.e. T1 ∼ Exp(λ1), where λ1 is the rate
parameter of the Poisson process between u and v. Similarly,
we have T2 ∼ Exp(λ2) for node v and w. Then, the available
probability (denoted as Q) of the opportunistic path from u to
w via v (i.e., u contacts v first and then v contacts w) within
T can be represented as Q = P (T ≤ T ), where T = T1 +T2.
Note that the sequence of node contact is already captured by
P (T ≤ T ). Assuming the probability density functions (PDF)
of T1 and T2 are f1(t) and f2(t), respectively, P (T ≤ T ) can
be calculated through the convolution f1(t)⊗ f2(t). However,
a data item may not be completely transmitted during one
contact between neighboring nodes, may but require multi-
ple contacts. Thus, multiple contacts at each hop should be
considered.

Assume a data item can be transferred from u to w by
the number of contacts a between u and w, and from w
to v by the number of contacts b between w and v. For a
collection of independent and identically distributed (i.i.d.)
random variables {Ti, i = 1, . . . , a} and Ti ∼ Exp(λ1),
we have T1 ∼ Gamma(a, λ1), where T1 =

∑a
i=1 Ti. Sim-

ilarly, for {Tj, j = 1, . . . , b} and Tj ∼ Exp(λ2), we have
T2 ∼ Gamma(b, λ2), where T2 =

∑b
j=1 Tj . Then the PDF of

T = T1 + T2 can be represented as

f(t) = f(t; a, λ1)⊗ f(t; b, λ2)

=
ta−1e−tλ1

λ−a
1 Γ(a)

⊗ tb−1e−tλ2

λ−b
2 Γ(b)

.

For a k-hop opportunistic path with the rate parameter λi

and the contact number ni at each hop i (we also call it k-hop
opportunistic contact path), the PDF of T = T1 + · · ·+Tk can
be easily generalized as

f(t) = f(t; n1, λ1)⊗ f(t; n2, λ2)⊗ · · ·⊗ f(t; nk, λk)

=
tn1−1e−tλ1

λ−n1
1 Γ(n1)

⊗ tn2−1e−tλ2

λ−n2
2 Γ(n2)

⊗ · · ·⊗ tnk−1e−tλk

λ−nk
k Γ(nk)

. (2)

However, it is hard to calculate (2) due to the higher order
convolution. To simplify the calculation, we have the following
by extending the Welch-Satterthwaite approximation to the
sum of gamma random variables

f(t) ≈ tγ−1e−tδ

δ−γΓ(γ)
, (3)

where

γ =

(∑k
i=1 niλi

)2

∑k
i=1 niλ2

i

and δ =
∑k

i=1 niλ2
i∑k

i=1 niλi

.

Thus, T can be approximated by a single gamma random
variable T̃ ∼ Gamma(γ, δ), where T̃ and T are proved to have
the same mean and variance. Then, the opportunistic contact
probability with time constraint T , denoted as P (T ≤ T ), can
be easily calculated.

It is shown in [15] that in some mobile traces the expo-
nential distribution of inter-contact duration between nodes
may feature a head that likely follows a power law. This
dichotomy is separated by a characteristic time [15], denoted
as Tc. When the time constraint T is longer than or equal
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to Tc, the probability sits on the tail of the distribution, which
is exponential, and thus it is accurate. When T is shorter
than Tc, the probability sits on the head of the distribution,
and thus it may be overestimated. The rigorous mathematical
analysis on the mobile traces featured with the dichotomy is
out of the scope of this paper.

B. Data Transfer Probability

As the contact duration is modeled as the Pareto distribution,
it can be easily concluded that the amount of data that can
be transferred during a contact between a pair of nodes also
follows a Pareto distribution since the data rate between a
pair of nodes is relatively stable as shown in [40]. Let random
variable D1 represent the amount of data transmitted during
a contact between node u and v, which follows the Pareto
distribution with shape parameter α and scale parameter β
(β is the minimum possible value of D1), i.e. D1 ∼
Pareto(α, β). For a collection of i.i.d. random variables
{Di, i = 1, . . . , c} and Di ∼ Pareto(α, β), let D =

∑c
i=1 Di.

Then, the probability that a data item with size D can be
transferred with the number of contacts c between node u and
v is represented as P (D ≥ D) and can be derived from the
PDF of D. However, since D is the sum of an arbitrary number
of random variables, its PDF cannot be easily approximated by
stable distributions. Therefore, we choose to approximate D
by the maximum value of {Di, i = 1, . . . , c} denoted as M,
which relies on the observation that M has the same order
of magnitude as the sum D since the Pareto distribution is a
heavy-tailed distribution.

To capture such intuition, let us define R = D/M. Then,
D can be approximated by M, considering the ratio R. Then,
P (D ≥ D) can be approximated as

P (D ≥ D) ≈ 1−
(

1− (
βR̄

D
)α

)c

, (4)

where R̄ is the expectation of R (see Appendix VIII for the
derivation). Approximating D with M bears a low relative
error about 10% [36].

C. Data Delivery Probability

Given an opportunistic path, a data item D and a time
constraint T , we will show how to calculate the probability of
successful delivery of D over the opportunistic path within T ,
denoted as P (T, D), based on the opportunistic contact prob-
ability and data transfer probability.

First, we consider the case of a one-hop path. The data
item needs at most l = ⌈D

β ⌉ node contacts to be completely
transferred. Then, P (T, D) can be calculated as the sum of
the probabilities that the data item is completely transmitted
at each particular contact as following

P (T, D) =
l∑

i=1

P̃i−1 · P (Ti ≤ T − T ′) · P (Di ≥ D), (5)

where

P̃i =

⎧
⎪⎨

⎪⎩

i∏
j=1

P (Tj ≤ T − T ′) · P (Dj < D) i > 0

1 i = 0,

T ′ = D
r denotes the transmission time of the data item and

r is the data rate between these two nodes. As in (5), the
probability that ith contact completes the data transfer can be
interpreted as the probability that the data can be transferred
within i node contacts when i − 1 contact fails (i.e. the data
transferred by former i − 1 contacts is less than D and the
sum of inter-contact duration of i contacts is less or equal
to T − T ′).

Then, we can extend the calculation of P (T, D) to a k-hop
path. Given a k-tuple

⟨n1, . . . , ni, . . . , nk⟩, 1 ≤ ni ≤ ⌈
D

βi
⌉, (6)

which falls into one of the
∏k

i=1⌈
D
βi
⌉ possible combinations,

we need to calculate the probability that the data can be trans-
ferred through the path by the specified number of contacts at
each hop as ni in the k-tuple. Similar to the calculation for
the one-hop path, we need to consider the failure probability
of tuples which have one less contact number at one of the
hops. For example, for 2-tuple ⟨n1, n2⟩, we need consider the
failure probability of both ⟨n1−1, n2⟩ and ⟨n1, n2−1⟩. Finally,
P (T, D) on the k-hop path can be calculated as the sum of
the probabilities of all the combinations, and the computational
complexity is

∏k
i=1⌈D

βi
⌉. β depends on the contact duration

and data transmission rate between nodes, and thus it varies
in different application scenarios. The complexity depends on
not only β but also D. Given a network, β between node
pairs is in the same scale based our analysis on real traces
(e.g., in MIT Reality trace [7], the minimum contact duration
of 99% node pairs is between 5 and 50 minutes) and hence D
determines the complexity. Moreover, D should not be much
larger than β. Given a typical value of α, e.g., 2 as in MIT
Reality trace, it approximately needs D/2β contacts to transfer
D between a pair of nodes. Assuming D and β are in different
scales, e.g., D = 10GB and β = 1MB, we do not expect
any applications can tolerate a data transfer to be completed
by 5000 opportunistic contacts. Therefore, the computational
complexity is low in practice.

Note that we do not consider the case where an edge can
be shared by multiple paths, since this will complicate the
problem and make it impossible to calculate the data delivery
probability.

In summary, the probabilistic framework explores contact
pattern between nodes to provide the estimation of data
delivery probability over the opportunistic path, which is the
basis of our designed algorithms. To the best of our knowledge,
this is the first work that provides such estimation without any
restrictions.

V. HEURISTIC ALGORITHM

In this section, based on the proposed probabilistic frame-
work, we give the design of the heuristic algorithm.

A. The Algorithm
According to (1), intuitively, a good solution of cooperative

offloading should have a small number of data segments
while keeping a high delivery probability for each segment.
Therefore, the basic idea of the heuristic algorithm is to first
find some paths between the source and destination that have
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a higher available probability than the direct path. Then, it is
determined how much data should be assigned at each of
these paths, while maintaining a high data delivery probability.
Finally, data reallocation among these paths is performed to
maximally improve the delivery probability of the entire data
item.

To choose particular paths for data offloading, we need to
measure the capability of paths for data transmission. Since
all paths are opportunistic, which are characterized by contact
frequency and contact duration at each hop, we can explore
these two properties to measure the capability of each path.
However, without prior knowledge of how much data will be
assigned at each path, it is difficult to quantify the capability
of paths. Therefore, we employ the available probability of
the opportunistic path within the time constraint Q as the
metric to characterize each path, since the establishment of the
opportunistic path within the time constraint is the prerequisite
of data transmission between the pair of nodes. Moreover,
the available probability of direct path (one hop path between
source and destination), denoted as Q′, is used as the criterion
to choose these paths.

After allocating the paths, we need to determine how much
data should be assigned to each path initially. When nodes
contact each other, β is the size of data that can be guaranteed
to be transferred (according to the Pareto distribution). Thus,
for each path, we allocate the amount of data that can be
guaranteed to be transferred along the path if the path can
be established with the time constraint, i.e. min{βi, i =
1, · · · , k}. We call this the path capacity, denoted as Ci

uv for
path i between node u and v. Note that the delivery probability
of initially assigned data at a selected path is the same with the
available probability Q of the path, so no additional calculation
is needed.

Considering an example where node u needs to transmit a
data item S to node v within T , the heuristic algorithm works
as follows. First, we adopt Dijkstra’s algorithm with the metric
of Q to find the path from node u to v that has the minimum
1/Q. Note that in Dijkstra’s algorithm Q is calculated for the
path between node u and unvisited node according to (3). If the
found path i has Qi ≥ Q′ (if node u does not have a direct
path to v, Q′ = 0), then we assign the data amount of Ci

uv to
path i, i.e., Si = Ci

uv if Ci
uv < S −

∑
i∈PA

Ci
uv , otherwise

Si = S−
∑

i∈PA
Ci

uv , and add i into the set of allocated paths
PA. After allocating path i, the edges along the path will be
removed from the network and not considered in subsequent
searches.

The searching process is iteratively executed until it
meets one of the following stop conditions: (i) Qi < Q′;
(ii) node v cannot be reached by Dijkstra’s algorithm from
u; (iii)

∑
i∈PA

Si = S. If the searching process ends with
|PA| = 0, there is no need to offload and it is better to send
the data item directly from u to v. If

∑
i∈PA

Si < S, the
remaining data needs to be assigned to PA. If

∑
i∈PA

Si = S,
data reallocation among PA is needed to improve the delivery
probability of S. The path searching process is from line 1 to 9
in Algorithm 1

To assign the remaining data of S −
∑

i∈PA
Ci

uv to PA,
first we rank PA according to the delivery probability of the
assigned data at each path, i.e. P i

uv(T, Si), i ∈ PA. Then,

Algorithm 1 Heuristic Algorithm
Input : u, v, S, T
Output: PA, S

1 while DijkstraMaxQ(u, v) ̸= ∅ &&
∑

i∈PA
Si < S

do
2 p← DijkstraMaxQ(u, v)
3 if Qp < Q′ then
4 break
5 end
6 ExcludeAllocPath(p)
7 PA ← PA ∪ {p}
8 S ← S ∪ {Sp}
9 end

10 while S −
∑

i∈PA
Si > 0 do // assign remaining data

11 p← arg maxi∈PA P i
uv(T, Si)

12 q ← arg maxi∈PA\{p} P i
uv(T, Si)

13 while P p
uv(T, Sp) ≥ P q

uv(T, Sq) &&
S −

∑
i∈PA

Si > 0 do
14 Sp ← Sp + ∆ // ∆ is increment of assigned data

15 end
16 end
17 while do // reallocate data

18 P ′
A ← PA, S′ ← S

19 j ← arg mini∈P′
A

P i
uv(T, Si)

20 P ′
A ← P ′

A\{j}, S′ ← S′\{Sj}
21 while Sj > 0 do
22 p← arg maxi∈P′

A
P i

uv(T, Si)
23 q ← argmaxi∈P′

A\{p} P i
uv(T, Si)

24 while P p
uv(T, Sp) ≥ P q

uv(T, Sp) && Sj > 0 do
25 Sp ← Sp + ∆
26 Sj ← Sj −∆
27 end
28 end
29 if

∏
i∈PA

P i
uv(T, Si) <

∏
i∈P′

A
P i

uv(T, Si) then
30 PA ← P ′

A, S ← S′

31 else
32 break
33 end
34 end

we assign more data to the path with the highest delivery
probability among PA until the probability is lower than the
second highest one. The process is repeated until there is no
remaining data. When assigning more data to the selected
allocated path, we need to determine the amount of data to
be assigned each time. As the path capacity of a k-hop path
is min{β1, β2, . . . , βk}, each time we increase the amount of
the assigned data to next higher value among {β1, β2, . . . , βk}.
If the assigned data is more or equal to max{β1, β2, . . . , βk},
each time the assigned data is increased by the path capacity.
The assignment of the remaining data is from line 10 to 16
in Algorithm 1

After all the remaining data is assigned, we further refine the
delivery probability of S by reallocating the data assigned at
the path, say path i, which has the lowest delivery probability
among PA, to other paths in PA using the same approach
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described above. If the reallocation of Si improves the delivery
probability of S, path i is excluded from PA and the process
is repeated, otherwise the reallocation process stops (from line
29 to 33 in Algorithm 1). The heuristic algorithm ends up with
the allocated paths and the data assignment at each path.

B. Discussion
The heuristic algorithm runs on mobile devices. When each

mobile device connects to the infrastructure, it uploads the
contact information with other nodes to the infrastructure
such that the infrastructure has the global information of the
network. Then, the infrastructure sends out the up-to-date
global information each time a node is connected to it such
that each node has the global information. When a node needs
to transmit data to the infrastructure, it can run the heuristic
algorithm based on the global information it currently has to
determine how to cooperatively offload the data.

The global information may reveal users’ contacts and
intrude on their privacy. However, a user’s identity is hidden
behind the node id. Without correlating a user with its node id,
the user’s privacy is secure. More sophisticated and rigorous
treatment of privacy control is out of the scope of this paper.

The contact information between a node pair is represented
by three parameters, i.e., α, β, and λ. Let dm denote the
maximum node degree and N be the number of nodes in the
network. The size of exchanged contact information during a
contact between a node and infrastructure is at most 3dmN .
Since the maximum node degree dm commonly does not
increase with the network size N , the overhead of exchanged
contact information linearly scales with the network size.

In the algorithm, we exclude the allocated paths from the
subsequent path searches, because it is extremely hard to cal-
culate the data delivery probability if multiple data segments
are transmitted along an edge which is shared by multiple
allocated paths. Therefore, we choose to avoid the difficulty by
regulating an edge to be occupied by only one allocated path.
Moreover, this also limits the maximum number of allocated
paths to the minimum node degree (number of neighbors)
of source and destination, and thus path allocation using
Dijkstra’s algorithm can terminate quickly.

Intuitively, multi-hop paths should be considered for data
transmission when its available probability is higher than a
one-hop path. Therefore, Q′ is employed as a criterion to
allocate paths. As indicated in Section IV, the computational
complexity of data delivery probability over multi-hop paths
increases with the number of hops. However, due to the
adoption of Q′, allocated paths are usually limited to paths
with fewer hops and thus we can avoid the high computational
complexity of delivery probability when data that is more than
the path capacity is assigned to a multi-hop path.

Data assignment at each allocated path is initially set to the
path capacity, and thus the data delivery probability at each
path is the same as Q. This is a good choice because we
do not know which paths are sensitive (in terms of delivery
probability) to the increase of assigned data beforehand. After
path allocation and initial data assignment, the number of data
segments is the same as that of allocated paths. Then, data is
reallocated from paths of lower delivery probability to ones
of higher probability so as to improve the delivery probability

of the data item by reducing the number of allocated paths.
This complies with the design intuitions that the number of
data segments should be small and each allocated path should
have a high delivery probability.

Moreover, the computational complexity of the heuristic
algorithm is much lower than PTAS for cooperative offloading.
PTAS needs to search all possible paths (they can be very
long) between source and destination; the heuristic algorithm
only needs to locate the paths, the available probability of
which is more than Q′. In addition, PTAS has to calculate the
delivery probability of each path when carrying all possible
amounts of data. This incurs the most of the computation.
Unlike PTAS, the heuristic algorithm only needs to calculate
certain amounts of data for the few allocated paths. Due to
the uncertainty of the number of paths, path length and path
capacity, it is hard to give the mathematical comparison of the
computational complexity between the heuristic algorithm and
PTAS. However, based on the reasoning stated above, it is easy
to conclude that the computation of the heuristic algorithm is
much less that of PTAS, and its performance is close to the
optimum as we will demonstrate in Section VII.

For the heuristic algorithm itself, excluding the complexity
of calculating the data delivery probability, the complexity
includes three parts. (i) The complexity of allocating paths
between a pair of source and destination is dmN2. Since a
selected path is excluded from the network, at most dm paths
are allocated. Dijkstra’s algorithm costs N2 each run and thus
totally dmN2. (ii) The complexity of assigning remaining data
to selected paths is S2, where S is the size of the data item,
since the remaining data is at most S and the increment of data
assignment is at least 1. (iii) The complexity of reallocating
data among selected paths is dmS2, because there are at
most dm reallocation processes and each costs at most S2.
So, the combined complexity is dmN2+S2+dmS2. Since the
maximum node degree dm commonly does not increase with
the network size N , the complexity of the heuristic algorithm
is O(N2 + S2).

Based on the characteristics of the heuristic algorithm,
we expect the use cases of the heuristic algorithm, in general,
are the scenarios where contact pattern between nodes is
relatively stable and communication overhead is small, which
means the time taken to exchange contact information between
infrastructure and node is relatively short compared to their
contact duration by jointly considering bandwidth and network
size. If contact pattern between nodes varies largely, the
information collected by the infrastructure may be stale, which
may affect the performance. If the network size is too large,
the communication overhead may dominate and little data
can be transmitted from a node to the infrastructure during
a contact. An example use case is disaster recovery, where
rescue crews and survivors can better communicate with the
command center using their smartphones via limited mobile
cellular tower [21] by cooperative data offloading. The global
information can be stored at the command center (directly
connected with mobile cellular towers), which can be trusted
in this scenario. Moreover, the heuristic algorithm is ready
and easy to deploy on the delay-tolerant network architecture
DTN2 [1] and the smartphone-based system [21] for disaster
recovery.
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Fig. 3. Paths constructed based on local information. (a) paths between node
u and v based on the information at node u. (b) paths between node u and
v based on the information at node u and c.

VI. DISTRIBUTED ALGORITHM

Global information is required for the heuristic algorithm
presented above. However, in some scenarios such informa-
tion might not be available or cost too much to collect.
Furthermore, the pattern of contact frequency and contact
duration between nodes may vary largely over time and thus
the collected information may be stale, which will impact the
performance of the heuristic algorithm. Thus, in this section
we propose a distributed algorithm to address these problems.

In opportunistic mobile networks, it is hard to maintain
multi-hop information locally, since nodes only intermittently
contact each other and thus the information cannot be promptly
updated. Moreover, from the probabilistic framework, we can
infer that shorter paths are prone to have a higher data delivery
probability, and thus maintaining multi-hop information can
also be wasteful. Therefore, in the design of the distrib-
uted algorithm, it is only required that each node maintains
two-hop information of contact frequency and contact duration
between nodes; i.e., each node maintains contact frequency
and contact duration with its neighbors, and when two nodes
encounter, they will exchange such information and then they
will have the two-hop information. The goal of the distributed
algorithm is to determine whether and how much data should
be transmitted when the node carrying the data encounters
other nodes based on the collected information so as to
improve the delivery probability.

With the two-hop information maintained locally, the source
node can initially construct paths to the destination (infrastruc-
ture). For example, as shown in Figure 3a, there are four paths
that can be constructed from node u to node v including one
one-hop path and three two-hop paths, where node a, b and
c are the potential nodes to cooperate for data transmission.
Moreover, when the source node encounters a neighbor, it also
has the local information maintained at this neighbor. For
example, as shown in Figure 3b, when node u encounters
node c, node u learns the information of the two-hop paths
between c and v, and then node u can construct more paths
to node v.

The distributed algorithm exploits the locally maintained
information for data offloading, which includes three phases:
criterion assignment, real-time adjustment and assignment
update. The first phase leverages the local information to select
the paths for offloading and determines the data assignment for
each path; the second phase adjusts the data assignment based
on the local information of the encountered node to achieve
a better delivery probability; the third phase updates the data
assignment at the sender and receiver based on the actually
transmitted data amount between them. Consider Figure 3 as

an example, where node u has data S to transmit to v. First,
node u determines the criterion assignment based on the paths
in Figure 3a. Then, when node u encounters c, node u needs
to adjust the size of data to be transmitted to node c, which can
maximally improve the delivery probability of S determined
by the criterion assignment, based on the additional paths in
Figure 3b. After the data transmission between u and v, both
need to update their data assignment.

A. Criterion Assignment
Although the data to be transmitted to a neighbor will be

adjusted when the source node meets the neighbor, the source
node should provide a reasonable criterion for later adjustment.
To obtain a good delivery probability, the criterion assignment
is determined as follows. Let Puv denote the set of paths
from node u to v, which only includes the paths that are no
more than two hops from node u to v, and let Cuv denote the
capacity of Puv , where Cuv =

∑
i∈Puv

Ci
uv . If Cuv < S, the

data assignment at path i in Puv is Si = S× Ci
uv

Cuv
. If Cuv ≥ S,

we rank Puv according to the available probability of each
path, and then the first k paths of Puv , where

∑k
i=1 Ci

uv ≥ S,
are selected and the assigned data for each path is equal to
the path capacity except the last one, the assignment of which
is S−

∑k−1
i=1 Ci

uv . Let Au denote the data assignment at node
u, Au = {Si, i ∈ Puv}. This data assignment is determined
before transmission.

B. Real-Time Adjustment

With the criterion assignment, we have the data assignment
for each path from node u to v. The data assigned at the path
that goes through node c is the amount of data to be transmitted
to node c when nodes u and c encounter. However, node c may
be more likely to deliver a certain amount of data to node v
than node u. If so, this amount of data should be transmitted
to node v from c instead of u so as to improve the delivery
probability. Thus, node u needs to investigate this capability of
node c based on c’s local information (paths to node v as the
shadow part in Figure 3b) when they are in contact, and then
adjust the amount of data to be transmitted to c accordingly.

The real-time adjustment works as follows. When nodes u
and c are in contact, first u selects the path among Puv that has
the minimum delivery probability of the assigned data before
deadline. Let us say the selected path is j and its assigned data
is Sj . Then, the path among Pcv, to which the reallocation of
Sj can maximally improve the delivery probability of S, can
be determined, say path k. Sj should be transferred to node v
from c instead of u, and thus Sj needs to be transmitted from
u to c first. So the data amount to be transmitted from u to c
will be increased by Sj and Sj will be assigned at path k. The
process is repeated. If the reallocation of Sj cannot increase
the delivery probability of S, the process stops.

The following shows how to compare the improvement
of the delivery probability of S when Sj is reassigned to
different paths, say path d and e in Pcv. Let Sd and Se denote
the amount of data already assigned at path d and path e,
respectively, which can be the assignment of data currently
carried by node c or zero. To compare their improvement, we
only need to calculate the delivery probabilities of Sj+Sd+Se
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when Sj is reallocated to path d and path e, respectively,
since the assignment of the rest of S is not impacted. If Sj is
reassigned at path d, the delivery probability of Sj + Sd + Se

is the product of the delivery probability of Sd+Sj along path
d and the delivery probability of Se along path e. Similarly
we can calculate the delivery probability of Sj + Sd + Se if
Sj is assigned at path e, and then we can determine to which
path Sj should be assigned.

C. Assignment Update
The real-time adjustment ends with the total amount of data

to be transmitted from node u to node c, denoted as Sc, and
the assignment of Sc at Pcv. Together with the assignment of
currently carried data at node c, let Ac denote the total data
assignment at node c, Ac = {Si, i ∈ Pcv}. As the actually
transmitted data from u to c, denoted by S′

c, may be less than
Sc due to the uncertainty of their contact duration, both node
u and node c need to update the data assignment after the data
transmission. For node u, the amount S′

c should be excluded
from the assignment Au by sequentially removing the data
assigned at the path with the lowest delivery probability.
Similarly, for node c, the amount Sc−S′

c needs to be removed
from Ac.

D. Discussion

Based on these three phases, the distributed algorithm
works as follows. First, the source node determines a criterion
assignment for the data item. Then, when the node that carries
the data encounters a neighbor, it first determines whether the
neighbor is the source node or if it received the data from
this neighbor before. If so, no data will be transmitted. If the
encountered node does not have the data, the node carrying the
data needs to determine how much data is to be transmitted
to the encountered node (if both of nodes have the data, they
also need to determine who should transmit data to another)
by comparing the improvement of the delivery probability by
data reallocation. After that, the determined reallocated data is
transmitted and then the data assignment at sender and receiver
is updated based on the amount of data actually transferred
during their contact.

In the design of the distributed algorithm, nodes are only
required to maintain two-hop information. One motivation for
this is that, as stated above, nodes opportunistically contact
each other and hence locally maintained multi-hop information
cannot be promptly updated. Another reason is that by regu-
lating to two-hop paths, the data delivery probability over the
paths can be easily calculated and thus nodes can quickly make
decisions at runtime, i.e., at the phase of real-time adjustment.

Although the distributed algorithm requires that the source
node must have a path with no more than two hops to
infrastructure, it can easily establish these paths through its
neighbors since most nodes in the network intermittently
connect with infrastructure. Moreover, intermediate nodes, e.g.
node c in Figure 3b, will also exploit two-hop paths to forward
data. Therefore, there are enough paths to be explored for data
transmission.

The design of the distributed algorithm takes advantage
of both node contact patterns and stochastic node contacts.

TABLE I

PARAMETER SETTINGS FOR BENCHMARK

Criterion assignment is determined based on two-hop con-
tact patterns, which can be interpreted as how much data
is expected to be transmitted along each path. Real-time
adjustment exploits stochastic node contacts to find opportu-
nities (e.g., additional paths) that can improve the delivery
probability at runtime. These schemes make up for the lack of
global information, and thus the distributed algorithm should
perform close to the heuristic algorithm.

The distributed algorithm does not require the central entity
to store the global information, thus it can be widely deployed
to opportunistic mobile networks. An example use case is
vehicular ad hoc networks. Since the contact duration between
vehicle and roadside unit is short, vehicles can leverage coop-
erative data offload to overcome the incomplete data transfer
due to the transient contact. Since the heuristic algorithm
incurs additional communication overhead between vehicle
and roadside unit, it does not work well in this scenario.
However, the distributed algorithm, which is insensitive to net-
work size and has no communication overhead between vehi-
cle and roadside unit, perfectly fits this scenario. Moreover, the
distributed algorithm is ready and easy to be integrated with
the architecture DTN2, where infrastructure can be treated just
as a type of nodes.

VII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the heuristic
algorithm and distributed algorithm based on synthetic net-
works and real traces.

A. Evaluation on Synthetic Networks

First we investigate the performance of the heuristic
algorithm on synthetic networks. The synthetic networks are
generated by the well-know benchmark [16]. It provides
power-law distribution of node degree and edge weight, and
various topology control. There are several parameters to con-
trol the generated network: the number of nodes, n; the mixing
parameter for the weights, µw; the mixing parameter for the
topology, µt; the exponent for the weight distribution, ξ; the
average node degree, d; and the maximum node degree. dm.
The settings of these parameters are shown in Table I.

With the synthetic networks, we also need to generate
the contact pattern between nodes and between node and
infrastructure. The settings of these distribution parameters
(i.e., α, β and λ) are shown in Table II, where α = [3, 4],
for example, means that α between pair of nodes is set to a
random number between 3 and 4, which follows the uniform
distribution. The parameter settings are chosen based on our
analysis on real traces (i.e., MIT Reality and DieselNet).
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TABLE II

PARAMETER SETTINGS FOR NODE CONTACTS

Fig. 4. Data Delivery probability based on estimation and simulation for
Individual and Cooperative in synthetic networks, where d = 10, dm = 15,
α = [6, 10], λ′ = [0.001, 0.01]. (a) probability vs data size, T = 400.
(b) probability vs deadline, S = 20.

When a node transmits data to the infrastructure, it needs
to decide whether to offload the data to other nodes so as to
improve the delivery probability. So, the node goes through
the following procedure. First, it calculates the probability
that the node directly transmits the data to the infrastructure
(no offloading, the data is transmitted only when it con-
nects with infrastructure), denoted as Individual Est. Then it
employs the heuristic algorithm to calculate the probability if it
offloads the data to other nodes, denoted as Cooperative Est.
If Cooperative Est is greater than Individual Est, the node
offloads the data to the selected paths with the correspond-
ing data assignment determined by the heuristic algorithm.
Individual Est and Cooperative Est are compared for data
transmissions with different data sizes and deadlines at each
node in the networks. We also compare the delivery proba-
bilities based on simulations (denoted as Individual Sim and
Cooperative Sim). Specifically, we generate the random num-
bers for inter-contact duration and contact duration between
neighboring nodes according to their distributions, then data
is transmitted between nodes based on these generated contact
information.

Cooperative Does Help: Figure 4 shows the comparison
of the delivery probabilities for Individual and Cooperative in
synthetic networks. Figure 4a shows the successful probability
of transmissions with varying data sizes, meanwhile Figure
4b shows the successful probability of transmissions with
varying deadlines, where the estimated probability is averaged
for all the nodes for each transmission, and the simulated
probability is averaged for all the nodes with 500 simulation
runs (i.e., the simulated probability is the number of successful
transmissions divided by the total number of transmissions).

As shown in Figure 4a, for both Cooperative and Individual,
the probability decreases with the increase of data size as
expected. When the size of data is small, the data can be
easily transmitted directly to infrastructure, and thus their

Fig. 5. Data Delivery probability based on estimation for Optimal and
Cooperative. Data is sent to infrastructure from a selected node in a synthetic
network, where d = 10, dm = 15, α = [6, 10], λ′ = [0.001, 0.01].
(a) probability vs data size, T = 400. (b) probability vs deadline, S = 10.

probabilities are similar. However, when the size of data
increases, the probability of Individual drops dramatically
from S = 10 to S = 40 while cooperative offloading
significantly improves the delivery probability (e.g., it can
be increased from 20% to 70% when S = 20). When the
data size increases further, the probability of Cooperative
also decreases, i.e. cooperative offloading cannot improve the
delivery probability as much as before. Figure 4b shows the
probability of data transmissions with varying deadlines. Sim-
ilarly, Cooperative and Individual start at the same probability.
The difference between them expands and then narrows when
the deadline further looses.

Delivery Probability Estimation. As shown in Figure 4a,
for Individual, the estimated delivery probability and the
simulated probability are almost the same for different data
sizes. Meanwhile, for Cooperative there is a little difference
between the estimated probability and the simulated proba-
bility when the data size is large. That might be incurred
by the approximation of sum of Pareto random variables as
discussed in Section IV. When the data size increases, more
node contacts are required to transfer a data item between
neighboring nodes, which may increase the deviation of the
approximation. However, this will not impact the decision
of cooperative offloading, since the estimated probability of
Cooperative is still much higher than Individual. As the
deadline is irrelevant to the approximation, the increase of the
deadline does not impact the difference between the estimated
and simulated probabilities, and they are almost identical as
shown in Figure 4b.

Cooperative Is Close to the Optimum: We also compare
Cooperative to the optimal solution of the cooperative offload-
ing problem, denoted as Optimal. Due to the high computa-
tional complexity of Optimal, we choose a problem of small
size (i.e., we randomly select one node in a generated synthetic
network to send data to infrastructure) and use brute-force
search to find the optimum.

Figures 5a and 5b depict the delivery probabilities of
Cooperative and Optimal in terms of varying data size and
deadline, respectively. Cooperative is close to Optimal in both
cases and different data sizes and deadlines only slightly affect
their disparities.

When Data Offloading Benefits: Figure 6 gives the relation
between percentage of offloaded data transmissions (over all
the data transmissions with different data sizes and dead-
lines) and contact pattern with infrastructure at particular
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Fig. 6. Percentage of offloaded data transmissions at nodes with different
inter-contact duration and contact duration to infrastructure, where d = 10,
dm = 15, λ′ = [0.001, 0.01], α = [6, 10], S varies from 2 to 100,
and T varies from 20 to 1000. (a) expected inter-contact duration between
node and infrastructure. (b) expected contact duration between node and
infrastructure.

nodes, where contact pattern is captured by expected inter-
contact duration and contact duration between a node and
infrastructure. Intuitively, nodes that frequently contact with
infrastructure or have long contact duration with infrastructure
do not need to offload the data as much as other nodes. Con-
sistent with this intuition, as depicted in Figure 6a, the more
frequently a node contacts infrastructure, the less transmissions
are offloaded. Moreover, as shown in Figure 6b, the shorter
the contact duration, the more transmissions are offloaded.
Moreover, inter-contact duration makes a larger impact on
offloaded transmissions than contact duration. For example,
when the contact frequency is low, a node may still need to
offload the data even if the contact duration is long, unless
the data is transmitted during the contact. That is the reason
offloaded transmissions decrease slow with the increase of
contact duration as shown in Figure 6b.

Network Settings Affect Data Offloading: Figure 7 gives
the contour of the percentage of facilitated nodes for data
transmissions with different data sizes and deadlines in various
network settings, where the facilitated node means that data
transmission with particular data size and deadline is offloaded
at the node. For example, the area enclosed by the green
line (80%) in Figure 7a indicates there are more than or
equal to 80% of nodes that offload the transmissions with
corresponding data size and deadline.

As shown in Figure 7a, for the network with a = [6, 10] and
λ′ = [0.001, 0.01], most of the transmissions are offloaded
(i.e. most of area is enclosed by green line (80%)) except
the transmissions with large data sizes and short deadlines
shown as the upper left corner. As shown in Figure 7b,
when nodes more frequently contact infrastructure (i.e. λ′ =
[0.01, 0.1]), small data can be easily transmitted to infrastruc-
ture directly, and thus the transmissions with small data size
are not frequently offloaded (less than 40%). On the contrary,
the transmissions with large data sizes and short deadlines
are mostly offloaded. When contact duration between nodes
becomes short (i.e. α = [3, 4] as in Figure 7c), compared to
Figure 7a, the delivery probability of the transmissions with
large data sizes cannot be greatly improved and thus they are

less offloaded at nodes. However, the transmissions with small
data sizes are mostly offloaded.

When nodes have a small number of neighbors in a network,
e.g. d = 5 and dm = 8 as in Figure 7d, compared to Figure 7a,
the reduced node degree undermines the offloading capability
of the network; i.e., the offloaded transmissions are generally
less than that of Figure 7a. Compared with Figure 7d, inter-
contact duration between node and infrastructure is decreased
(λ′ = [0.01, 0.1]) in Figure 7e. This dramatically changes the
pattern of the offloaded transmissions. As shown in Figure 7e,
offloading can improve the probability of most transmissions
but not for the transmissions with large data sizes and long
deadlines. That is because when nodes frequently contact
infrastructure, it is easy for nodes to transmit a data item to
infrastructure by multiple contacts and offloading the data item
to other nodes may not yield a high delivery probability. Last,
let us compare Figure 7f with Figure 7c. It is shown again that
node degree affects the offloading capability of the network,
since node degree determines how many nodes nearby that
can be explored for data offloading.

Therefore, from Figure 7, we can see network settings
do affect data offloading. In general, when node degree is
higher, there are more paths to infrastructure and thus data
transmissions are offloaded more often. When nodes contact
infrastructure more frequently, nodes can transmit more data
directly to infrastructure and thus data transmissions are
offloaded less often. When contact duration between nodes
becomes shorter, it is less possible for offloading to increase
data delivery probability and thus data transmissions are
offloaded less often.

In summary, through the extensive experiments on synthetic
networks, we can conclude that the proposed probabilistic
framework can accurately estimate data delivery probability
over opportunistic paths, cooperative data offloading can sig-
nificantly improve data delivery probability in various network
settings and contact patterns, and the data delivery probability
achieved by the heuristic algorithm is close to the optimum.

B. Evaluations on Real Traces
Next, we evaluate the performance of the heuristic algorithm

and the distributed algorithm based on real traces. We compare
them with other two solutions: Spread, where nodes offload
the carried data to any encountered node, and MaxRate, where
nodes only transmit the carried data to infrastructure or the
node in its neighbor set that has the maximum contact rate with
infrastructure. We also give the performance of no offloading,
i.e., the node directly sends data to infrastructure, denoted as
Individual.

The two opportunistic mobile network traces used are
MIT Reality [7] and DieselNet [2]. They record contacts
among mobile devices equipped with Bluetooth or WiFi mov-
ing on university campus (MIT Reality) and in suburban area
(DieselNet). The details of these two traces are summarized
in Table III.

In the experiment, half of the trace is used as warmup
to obtain the distribution information of contact frequency
and contact duration between nodes, and other half is used
to run data transmission. Since there is no infrastructure in
either trace, we choose the node with the maximum degree
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Fig. 7. Percentage of facilitated nodes for data transmissions with different data sizes and deadlines in various network settings. (a) d = 10, dm = 15,
α = [6, 10], λ′ = [0.001, 0.01]. (b) d = 10, dm = 15, α = [6, 10], λ′ = [0.01, 0.1]. (c) d = 10, dm = 15, α = [3, 4], λ′ = [0.001, 0.01]. (d) d = 5,
dm = 8, α = [6, 10], λ′ = [0.001, 0.01]. (e) d = 5, dm = 8, α = [6, 10], λ′ = [0.01, 0.1]. (f) d = 5, dm = 8, α = [3, 4], λ′ = [0.001, 0.01].

TABLE III

TRACE SUMMARY

to act as infrastructure. Nodes that cannot construct two-
hop path or one-hop to infrastructure are excluded from the
traces (note that only very few nodes are eliminated). In the
simulation, nodes send data items with different sizes and
deadlines to infrastructure at a randomly selected timestamp in
each simulation run and the results are averaged for 50 runs.

For MIT Reality trace, due to the Bluetooth scan interval,
only the contacts with duration of five minutes or more are
recorded, where contact duration is at minute level and inter-
contact duration is at day level. Thus, for data transmis-
sions, the data size varies from 10MB to 60MB (the data
rate is set to 240Kbps) and the time constraint varies from
10 to 100 hours. For DieselNet, contact duration is at second
level and inter-contact duration is at hour level. Thus, for data
transmissions in DieselNet, the data size varies from 2MB to
10MB (the data rate is set to 3.2Mbps) and the deadline varies
from 1 to 10 hours.

Figures 8a and 8b give the total transmissions, the offloaded
transmission of Heuristic, the successful transmissions of
Heuristic, Distributed, MaxRate, Spread and Individual in
MIT Reality and DieselNet, respectively. In MIT Reality,
as shown in Figure 8a, there are totally near 6000 data
transmissions. If no offloading (Individual) is performed,

Fig. 8. Total transmissions, offloaded transmissions of Heuristic and success-
ful transmissions of Heuristic, Distributed, MaxRate, Spread and Individual
in MIT Reality and DieselNet. (a) MIT Reality, S = [10, 60] MB and
T = [10, 100] hours. (b) DieselNet, S = [2, 10] MB and T = [1, 10]
hours.

the number of successful transmissions is only about 1400.
However, Heuristic has about 3000 successful transmissions
which is more than two times of Individual. This is also better
than other three algorithms: about 20% higher than that of
Distributed and 70% higher than that of MaxRate and Spread.
Moreover, about 40% of total transmissions are offloaded
by by Heuristic. The number of successful transmissions are
higher than the offloaded transmissions because the transmis-
sions that are not offloaded might be completed via direct
contact between source node and infrastructure. Distributed is
close to Heuristic, better than MaxRate and Spread, and almost
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two times of Individual. Although Spread and MaxRate have
different offload strategies, their performance is similar.

In DieselNet, as shown in Figure 8b, there are about
1800 total transmissions. The ratio of successful transmissions
of Heuristic and Distributed are both high, more than 70%.
Heuristic offloaded more than 50% of total transmissions. The
successful transmissions of Heuristic and Distributed are 40%
more than that of MaxRate and Spread (their performance is
still similar in DieselNet, about 900) and almost two times of
Individual.

Based on the evaluations on the real traces, it can be
concluded that the heuristic algorithm performs better than
the distributed algorithm, both of them are much better than
the simple offloading strategies MaxRate and Spread, and they
also perform about two times better than no offloading in both
traces. In spite of the lack of global information, the perfor-
mance of the distributed algorithm that only exploits paths no
more than two hops for data transmissions is comparable to
that of the heuristic algorithm.

VIII. CONCLUSION

In this paper, we addressed the problem of cooperatively
offloading data among opportunistically connected mobile
devices so as to improve the probability of data delivery to
infrastructure. We first provided the probabilistic framework
to estimate the probability of data delivery over the oppor-
tunistic path and then, based on that, we proposed a heuristic
algorithm to solve cooperative offloading. To cope with the
lack of global information, we further proposed a distributed
algorithm. The evaluation results show that the probabilistic
framework accurately estimates the data delivery probability,
cooperative offloading greatly improves the delivery probabil-
ity, the heuristic algorithm approximates the optimum, and
the performance of the heuristic algorithm and distributed
algorithm outperforms other approaches.

APPENDIX

APPROXIMATING SUM OF PARETO VARIABLES

For a collection of i.i.d. random variables {Di, i =
1, . . . , c} and Di ∼ Pareto(α, β), let D =

∑c
i=1 Di, M be

the maximum value of {Di, i = 1, . . . , c}, and R = D/M.
Then, D can be approximated by M, considering the ratio R.
First let us consider the ratio of D1/M. Then the Cumulative
Density Function (CDF) of D1/M can be expressed in terms
of the conditional distribution F (x|y) of D1 on the fixed
maximum M = y [36] as following

G(z) = P (D1/M < z) =
∫ ∞

0
P (

D1

y
< z|y)dF c(y)

=
∫ ∞

0
F (yz|y)dF c(y).

By taking the derivative with respect to z, then

g(z) =
∫ ∞

β
yf(yz|y)dF c(y). (7)

The conditional density f(x|y) corresponding to the distribu-
tion F (x|y) is given by

f(x|y) =
δ(y − x)

c
+ (1 − 1

c
)
f(x)H(y − x)

F (y)
, (8)

where H(x) = 1 for x > 0, otherwise H(x) = 0. The first
term on the rhs of (8) corresponds to the case M = D1, whose
probability is 1/c, while the complementary event D1 < M
occurs with probability (1 − 1/c). By plugging (8) into (7),
we then have

g(z) =
∫ ∞

0

(
δ(1− z)

c
+

c− 1
c

· f(yz)H(y − yz)
F (y)

)
dF c(y)

=
δ(1− z)

c
+ (c− 1)

∫ ∞

0
yf(yz)f(y)F c−2(y)dy.

Then, the expectation of the ratio R = D/M, denoted as R̄,
can be calculated as

R̄ = c

∫ 1

0
zg(z)dz

= 1 + c(c− 1) ·
∫ ∞

0
yf(y)F c−2(y)

∫ 1

0
zf(yz)dydz

= 1 + c(c− 1)

·
∫ ∞

0
yf(y)F c−2(y)

(
F (y)

y
− 1

y2

∫ y

0
F (x)dx

)
dy

= 1 + (c− 1)
(∫ ∞

0
dF c(y)

)

− c

(∫ ∞

0

(
1
y

∫ y

0
F (u)du

)
dF c−1(y)

)

= c

(
1−

∫ ∞

0

(
1
y

∫ y

0
F (u)du

)
dF c−1(y)

)
.

For Pareto distribution F (x) = 1− (β
x )α, then

R̄ = c− c

∫ ∞

β
1−

(β
y )α − αβ

y

1− a
d

(
1− (

β

y
)α

)c−1

.

By replacing the integral by beta function B(·, ·), finally we
have

R̄ =

⎧
⎪⎪⎨

⎪⎪⎩

1− cB(c, α−1)
1− α

, α ̸= 1
c∑

i=1

i−1, α = 1.
(9)

Thus, P (D ≥ D) can be approximated as

P (D ≥ D) ≈ P (MR̄ ≥ D) = P (M ≥ D

R̄
)

= 1−
c∏

i=1

P (Di <
D

R̄
) = 1−

(
1− (

βR̄

D
)α

)c

,

where R̄ can be easily calculated using (9).
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