
1

NetVision: On-demand Video Processing in
Wireless Networks

Zongqing Lu, Member, IEEE, Kevin Chan, Member, IEEE, Rahul Urgaonkar, Shiliang Pu, and Thomas La Porta,
Fellow, IEEE

Abstract—The vast adoption of mobile devices with cameras
has greatly contributed to the proliferation of the creation
and distribution of videos. For a variety of purposes, valuable
information may be extracted from these videos. While the
computational capability of mobile devices has greatly improved
recently, video processing is still a demanding task for mobile
devices. We design an on-demand video processing system,
NetVision, that performs distributed video processing using deep
learning across a wireless network of mobile and edge devices
to answer queries while minimizing the query response time.
However, the problem of minimal query response time for
processing videos stored across a network is a strongly NP-hard
problem. To deal with this, we design a greedy algorithm with
bounded performance. To further deal with the dynamics of the
transmission rate between mobile and edge devices, we design
an adaptive algorithm. We built NetVision and deployed it on a
small testbed. Based on the measurements of the testbed and by
extensive simulations, we show that the greedy algorithm is close
to the optimum and the adaptive algorithm performs better with
more dynamic transmission rates. We then perform experiments
on the small testbed to examine the realized system performance
in both stationary networks and mobile networks.

Index Terms—Video processing, edge computing, wireless net-
works.

I. INTRODUCTION

THE proliferation of handheld mobile devices and wireless
networks has facilitated the generation and rapid dissem-

ination of vast numbers of videos. Videos taken for various
purposes may contain valuable information about past events
that can be exploited for on-demand information retrieval. For
example, a distributed video processing problem may involve
a query of a set of mobile devices to find a specific vehicle in a
region of a city. Various stored videos within mobile devices,
not necessarily for the intention of capturing the object of
interest, may provide valuable information for such queries.
However, the processing requirements for such applications
approach the computational limits of the mobile devices.
Although the computational capacity of mobile devices has
greatly improved in the past few years, processing (multiple)
videos is still overwhelming for mobile devices.

In this paper, we consider the detection of objects in videos
on a wireless network consisting of mobile and edge devices.
Instead of storing and processing videos locally, mobile de-
vices can choose to upload videos to much more capable

Z. Lu is with the Department of Computer Science, Peking University.
Email: zongqing.lu@pku.edu.cn. K. Chan is with Army Research Labo-
ratory. E-mail: kevin.s.chan.civ@mail.mil. R. Urgaonkar is with Amazon.
E-mail: urgaonka@amazon.com. S. Pu is with Hikvision. Email: pushil-
iang@hikvision.com. T. La Porta is with the Department of Computer Science
and Engineering, Pennsylvania State University. E-mail: tlp@cse.psu.edu.

devices (i.e., computers with a much powerful GPU), which
can significantly accelerate video processing. Although these
devices are standalone platforms, they are used to process
videos on behalf of mobile devices and hence we call them
edge devices. However, due to the availability gap (the time
between when the video is taken and when it is uploaded) [1]
and when a query is issued, edge devices will not likely have
the pertinent video pre-stored, especially when the query is
about recent events. Therefore, to reduce the delay of the on-
demand information retrieval from videos related to a query,
the related videos can be processed either locally on the mobile
devices or transmitted and processed on the edge devices.

Based on this use of wireless networks for video processing,
there are clear scenarios to which this can be applied. Example
scenarios are: (i) emergency response and video forensics,
in which authorities attempt to identify objects or people of
interest in videos captured by surveillance systems or other
mobile devices that may have been either present or deployed
in the time and area of interest; (ii) wireless surveillance
systems, which support queries about the content of videos
captured by wireless cameras via on-demand information
retrieval from the videos. In these scenarios, edge devices can
be deployed to support the storage and processing of videos
to address on-demand information queries about past events.
Without edge devices, this process is significantly delayed,
resulting in serious consequences in the event that the query
is not addressed satisfactorily.

As an example, an information query may be the following
“did a red truck drive through downtown today?” Then,
all related videos stored on either mobile devices or edge
devices taken in proximity of the “downtown” area need to
be processed to detect the presence of a “red truck”. The
query will reach all devices in the network and finds all of
the potentially related videos based on video metadata (e.g.,
GPS, timestamp). The network needs to determine where to
process each video (locally or offloaded to edge devices), and
to which edge device to upload each video. This approach
should minimize the time required to process all of the related
videos, which is referred to as the query response time.

To enable such information queries, we design a system,
NetVision, that performs distributed video processing using
deep learning across a wireless network to answer queries
while minimizing the query response time. However, the
problem of processing pertinent videos distributed throughout
a wireless network with minimal query response time, which
is referred to as the processing scheduling problem, turns
out to be a strongly NP-hard problem. To deal with this,

2

we design a greedy algorithm with bounded performance,
which determines whether or not to offload each video, and
schedules a transmission sequence to offload videos from a
set of mobile devices before processing the videos. To cope
with the dynamics of the transmission rate between mobile
and edge devices during this process, we further design an
adaptive algorithm, which makes such decisions in runtime.
We built and deployed NetVision on a small testbed. Based
on the measurements of the testbed, we perform simulations to
extensively evaluate the proposed algorithms. We also perform
experiments on the small testbed to examine the realized
system performance in different network scenarios. The major
contributions of this paper are summarized as follows.
• We formulate the processing scheduling problem for

on-demand video processing to determine the optimal
video offloading and transmission sequence in terms of
minimizing the query response time.

• We design a greedy algorithm with bounded performance,
which exploits average completion time of nodes as a cri-
terion to consecutively determine each video offloading.
The performance of the greedy algorithm is close to the
optimum and much better than other approaches.

• We propose an adaptive algorithm with very low message
overhead to collect information from nodes and then
determine video offloading during runtime. The adaptive
algorithm performs better when the transmission rate
between mobile and edge devices is more dynamic.

• We built NetVision with these two algorithms and de-
ployed it on a network of mobile devices and an edge
device for information queries. Experimental results on
the testbed verify the realized system performance in
stationary networks.

• We further built an emulation environment for mobile
networks featured with dynamic transmission rates. By
plugging the small testbed into this environment, we fur-
ther confirm the benefit of NetVision in mobile networks.

The rest of this paper is organized as follows. Section II re-
views related work. Section III gives the overview. The greedy
algorithm is presented in Section IV, followed by the adaptive
algorithm in Section V. Section VI gives the implementation
of NetVision. Section VII evaluates the performance, Section
VIII discusses NetVision, and Section IX concludes the paper.

II. RELATED WORK

The proliferation of mobile devices with cameras, such
as smartphones and tablets, has substantially increased the
prevalence of images and videos. Images and videos taken
by mobile devices create opportunities for many applications
and have attracted considerable attention from research com-
munities. Much of the research focuses on images. Yan et
al. [2] studied real-time image search on smartphones. Qin
et al. [3] investigated tagging images, integrating information
of people, activity and context in a picture. Wang et al. [4]
optimized the selection of crowdsourced photos based on the
metadata of images including GPS location, phone orientation,
etc. Hua et al. [5] designed a real-time image sharing system
for disaster environments. Likamwa et al. [6] investigated the

energy optimization of image sensing on smartphones. Some
works focus on videos [7]–[12]. However, none of these works
consider on-demand information retrieval from videos stored
on networked mobile devices.

Mobile cloud computing bridges the gap between the limita-
tions of mobile devices and increasing mobile multimedia ap-
plications. Mobile devices can potentially perform offloading
of computational workloads to either improve resource usage
or augment performance. MAUI [13] and ThinkAir [14] are
the system frameworks to support method-level computation
offloading by code migration. Dynamic execution patterns and
context migration is investigated for code offloading in [15].
Virtual Machine synthesis is exploited for offloading in [16].
A few works focus on the latency of mobile offloading. Wang
et al. [17] considered reducing task completion by adaptive
local restart. Kao et al. [18] optimized the latency with
energy constraints by task assignment of mobile offloading.
Unlike existing work that focuses on workload offloading from
individual mobile device and concerns about when and how
much to offload, the major focus of this paper is to optimize
the latency of video processing across many mobile and edge
devices by determining to which edge device to offload and
the video offloading sequence.

Optimizing the computing of deep learning applications
on mobile devices are recently investigated by compressing
parameters of Convolutional Neural Networks (CNNs) [19]
[20], by distributing computation to heterogeneous processors
on-board [21] [22], and by jointly maximizing the performance
of all the concurrently running deep learning applications
under resource constraints [23]. DeepCache [24] is a prin-
cipled cached design to improve the execution efficiency of
deep learning for continuous mobile vision. However, the
computing capability of mobile devices (even equipped with
mobile GPUs) is still far behind powerful GPU-accelerated
workstations.

Glimpse [25] is a continuous, real-time object recognition
system for camera-equipped mobile devices, where the algo-
rithm for object recognition runs on the server. Vigil [26] is a
real-time distributed wireless surveillance system, where edge
computing nodes co-located with cameras are leveraged to per-
form simple vision analytic functions and analytic information
together with significant associated video frames are uploaded
to the cloud. MCDNN [27] is also a continuous video process-
ing system on cloud-backed mobile devices, systematically
trading off accuracy for resource usage. VideoEdge [28] is a
system that trades off between the accuracy of video analytics
and resources in a hierarchy of cameras, private clusters, and
public clouds. Unlike these works, we focus on on-demand
information retrieval and optimally processing videos stored
across a wireless network of many mobile and edge devices.

This work is also related to machine scheduling, e.g.,
multiprocessor scheduling. However, unlike existing work,
such as [29] [30], that considers thermal or energy as the
cost of scheduling a job, we consider the cost as a part of
the completion time at the scheduled machine. This changes
the problem dramatically and hence existing solutions cannot
be applied to our problem.

3

III. OVERVIEW

A. The Big Picture

We consider a wireless network that consists of mobile and
edge devices, where mobile devices can directly communicate
with edge devices via wireless links. When an information
retrieval query is initiated, videos on the nodes related to
the query need to be processed to answer the query. Note
that when we say node or network node, it refers to either a
mobile device or an edge device. In such networks, queries
can be easily disseminated in the network and then parsed at
each node to find the related videos, e.g., based on metadata
of videos, such as GPS locations and timestamps, or using
VideoMec [12]. The dissemination and parsing of the queries
is important to this process but is not the focus of this paper.

Since mobile devices have limited computational capabil-
ity, processing videos on mobile nodes may result in long
processing times, especially when there are many videos to
be processed. Therefore, besides processing videos locally,
mobile devices can also offload videos to edge devices and
process videos remotely. However, the offload process incurs
other delays, e.g., the processing delay at the edge device and
communication delay. Moreover, we consider deep learning
for video processing. Although deep learning (e.g., CNNs) can
be greatly accelerated by a GPU using parallel computing,
processing even a single video will fully occupy the GPU
and thus videos have to be processed sequentially. Therefore,
when an edge device is busy processing a video, it has to
put other videos into a queue. Moreover, we do not consider
mobile to mobile offloading since mobile devices have similar
computational capacity and such offloading rarely benefits
when considering these delays together.

Moreover, due to the constraints of video processing tech-
niques (e.g., the feature extraction for action recognition
requires all frames be available beforehand [31]), nodes can
process videos only when the video has been fully received1.
Considering this together with the limitation of wireless link
capacity, when more than one mobile device needs to offload
videos to the same edge device, it is desirable to transmit
the videos sequentially rather than in parallel such that the
edge device can process videos early. Similarly, each mobile
device should offload videos sequentially as well. For example,
assuming a node needs to transmit two videos with the same
size to another node and transmitting one video costs time t,
if the two videos are transmitted one by one, the receiver can
start processing the first video at t and the second video at 2t.
However, if the two videos are sent out simultaneously, the
receiver can only start processing at time 2t.

In addition, it is possible that different edge devices are
receiving videos from different mobile devices simultaneously.
This can be accomplished by assigning different wireless
channels at edge devices so as to avoid potential interference.
These constraints on video processing and communications

1Very large videos can be easily segmented into smaller videos by pre-
processing based on the change of scene or context for storing and transmis-
sion. We assume that the videos of mobile devices have already been pre-
processed. More sophisticated optimization incorporating with pre-processing
is to be considered in future work.

complicate the problem of processing videos throughout a
wireless network, specifically, when we aim to take advantage
of edge devices to optimize the query response time. In
summary, each node can only send or receive one video at
a time, which is referred to as the communication constraint
in this paper.

B. The Processing Scheduling Problem

To minimize the query response time, which is the time
required to process all the videos related to the query, we need
jointly consider several factors: which nodes should process
which videos, and what transmission sequence to perform the
video offloading, as each node can only transmit (or receive)
one video at a time. The processing scheduling problem is to
find such a video offloading and transmission sequence that
minimizes the query response time.

The processing scheduling problem is NP-hard, which can
be proved by reduction from machine scheduling [32]. Con-
sidering the special case where the communication delay of
videos is zero, processing scheduling can be seen as a general-
ization of machine scheduling with the constraint that certain
jobs can be only scheduled on some machines (i.e., videos
stored at a mobile device can only be processed at this mobile
device or remotely at edge devices), which is also NP-hard.
Thus, processing scheduling is NP-hard in the strong sense.
We do note that there is past work on machine scheduling,
considering different constraints. However, to the best of our
knowledge, they do not consider the cost of scheduling a
job (i.e., the communication delay of an offloaded video)
as a part of the completion time at the scheduled machine.
This change seems minor, however it makes the problem
completely different and hence existing solutions cannot be
applied to our problem. We will show the performance of the
scheme that does not consider the communication delay in
Section VII. Moreover, the processing scheduling problem is
also generic, because in many applications job/task scheduling
indeed incurs costs at the completion time, especially when
across networked devices. Therefore, our solution can be
generalized to other applications.

Let V represent the set of videos stored in the network
and related to the query, and let U denote the set of nodes
in the network. Uc denotes the set of edge devices and Ud

denotes the set of mobile devices, where U = Uc ∪ Ud . The
query response time Tmax is the maximum time to complete
processing of the assigned videos among all of the nodes. For
edge devices, the assigned videos are the videos stored locally
and the videos scheduled to be offloaded from mobile devices.
For mobile devices, the assigned videos are the locally stored
videos excluding offloaded videos. Let Tk , k ∈ U denote the
completion time of node k and then Tmax = maxk∈U Tk . The
processing scheduling problem is to minimize Tmax.

C. Completion Time

First, we show how to calculate the completion time of
nodes with the assignment of videos. Each video i assigned
at node k, has processing delay pi,k and communication delay
ci,k . Note that pi,k may vary across different types of queries

4

ed
g
e
d
ev
ic
e
k pa,k

ca,k

video a video b video c

pb,k

cb,k

pc,k

cc,k Tk0

Tk = cb,k + pb,k + pc,k

Fig. 1. An example of calculating the completion time of edge devices

that require different video processing solutions; and ci,k is
the time from the initiation of the query to when node k fully
receives video i. Note ci,k = 0 represents video i is locally
stored at node k.

Since videos may be scheduled to be processed by edge
devices instead of locally by mobile devices, we need to
account for the communication delay incurred by the offload.
As a result, the completion time of edge devices is not simply
equal to the sum of processing delay of videos assigned to
each node. Further, an edge device, say k, may also spend time
waiting for assigned videos. Therefore, for each video assigned
to k, we check if the video offload to k is completed before
k finishes processing existing videos or previously received
videos. If the offload is complete, the edge device does not
incur any waiting time, otherwise, the waiting time of k for the
video needs to be included in Tk . Therefore, Tk is calculated
as the sum of the processing delay of videos assigned at node
k and the waiting time for each video to be offloaded.

Fig. 1 is an example of calculating the completion time
of edge device k involving the offloading of videos with
various cases of processing and communication delays. As
discussed above, the completion time Tk is equal to the
sum of the processing delay and waiting time, and hence
Tk = pa,k+pb,k+pc,k+ca,k+(cb,k−pa,k−ca,k). It is simplified
as Tk = cb,k + pb,k + pc,k , which can be interpreted that if
node k spends time waiting for a video, then the time before
processing the video can be denoted by the communication
delay of the video. Thus, the calculation of the completion
time of nodes can be generalized as

Tk = max
i∈Vk

(ci,k +
∑
j∈Vk

αi, j,kpj,k), (1)

where Vk denotes the set of videos assigned to node k, and
αi, j,k = 1, if cj,k ≥ ci,k , otherwise 0. Note that (1) can also
be used to calculate the completion time of mobile devices.
Since, for mobile device k, ci,k = 0 and αi, j,k = 1 in (1),
Tk =

∑
i∈Vk

pi,k .

D. Communication Delay

The communication delay not only depends on the size of
videos and the transmission rate, but also the transmission
sequence of the mobile devices and the receiving sequence
for each of the edge devices. For example, mobile device k is
scheduled to first offload video a to an edge device m and then
transmit video b to another edge device n. Then, to calculate
the communication delay of cb,n, we need to determine when
node k can start to transmit video b to n, which is actually the
time when node k finishes offloading video a to m or the time
when the video scheduled before b, say c, in the receiving
sequence at n is received. Thus, we have

cb,n = Db/rk,n +max{ca,m, cc,n}, (2)

where Db is the size of video b, and rk,n denotes the trans-
mission rate from k to n. From (2), we can see the calculation
of communication delay is nonlinear.

E. Mathematical Formulation

Suppose x is a solution from the solution space χ for
processing scheduling, where x decides which videos each
mobile device should offload, to which edge devices these
videos should be sent, and the transmission sequence of all
the offloaded videos. The problem then can be formulated as

min
x∈χ

max
k∈U

max
i∈Vk (x)

(ci,k(x) +
∑

j∈Vk (x)
αi, j,kpj,k)

s.t. αi, j,k = 1, if cj,k(x) ≥ ci,k(x), otherwise 0,
∀k ∈ U, ∀i, j ∈ Vk(x),

(3)

where Vk(x) denotes the set of videos to be processed at node
k of solution x, ci,k(x) denotes the communication delay of
video i under solution x and ci,k(x) is subject to the constraint
that each node can only send or receive one video at any time.

The processing delay of each video can be easily obtained
based on the size of video, the node profile, and the execution
profile of the processing method, as in [13] and [33]. There-
fore, for a specific node and processing method, the processing
delay is proportional to the size of the videos (discussed in
Section VII). As the calculation of communication delay is
nonlinear, thus (3) cannot be further formulated by Integer
Linear Programming (ILP), which can be solved by the ILP
solver by integer relaxation.

Therefore, the processing scheduling problem is intrinsically
the major challenge to build the on-demand video processing
system in wireless networks. To deal with this, we propose a
greedy algorithm with bounded performance to solve the pro-
cessing scheduling problem in Section IV. Then, we propose
an adaptive algorithm in Section V.

IV. GREEDY ALGORITHM

In this section, we describe the design of the greedy
algorithm, give the performance analysis and discuss how the
greedy algorithm can be easily and efficiently implemented.

A. The Algorithm

The processing scheduling problem addresses how to of-
fload videos from mobile devices to edge devices to minimize
the maximum completion time for the entire process, which
equivalently can be seen as averaging the completion time of
all the nodes.

Intuitively, it is desirable for edge devices not to be idle
since they are able to process the videos faster than the mobile
devices. Even more preferable is that they are processing and
receiving videos simultaneously. We consider two situations
in which this may occur. Initially, the edge device may have
locally stored videos to process; therefore, it is desirable to
have the mobile devices upload larger videos first. This is
also true when the disparity of the completion time among
the nodes is the greatest. After several offloading steps, there
may be some convergence in terms of the average completion

5

m

n

u

v

∆Tm

∆Tn

TvTuTm Tn T

Tmax = Tv

a

b

c

reallocate a

∆T
m >

∆T
n

(a) offloading video a

m

n

u

v

∆Tm

∆Tn

TuTm Tn TvT

Tmax = Tu

a

b

c

reallocate b

T < Tn + ∆Tn

T > Tm + ∆Tm

(b) offloading video b

m

n

u

v

TuTm Tn TvT

Tmax = Tv

a

b

c

re
a
llo
c
a
te
c

idle time

T < Tn + ∆Tn

(c) offloading video c

Fig. 2. Illustration of the greedy algorithm, where m and n are edge devices, and u and v are mobile devices.

time. When the completion time among the nodes has less
variability, it is better to offload videos with small size. Based
on these intuitions, we design the greedy algorithm, which
offloads a video from the mobile device with the maximum
completion time to an edge device each step and improves
Tmax step by step. The algorithm works as follows.

1. Calculate the completion time for each node according
to (1), and then calculate the average completion time
of nodes, denoted as

T =
∑

i∈U Tisi∑
i∈U si

, (4)

where si denotes the processing rate of node i. Note
that the completion time of edge devices may include
idle time for waiting for an incoming video.

2. For the mobile device that has maximum completion
time, say i, find the videos that have sizes less than or
equal to (Tmax − T)si . Note that Tmax = Ti .

3. Then, the set of videos is assessed from largest to
smallest to find the first pairing of video and edge device
such that, if the video is offloaded to the edge device, it
has the minimal increase in completion time among all
edge devices and its completion time is still less than or
equal to T.

4. If there is no valid pair, select the smallest video on
mobile device i and offload it to the edge device, say m.
edge device m is chosen such that the completion time
of m is minimal among all edge devices and Tm < Tmax
after the offloading of the video.

5. If Tm ≥ Tmax (i.e., Tmax cannot be reduced by offloading
videos from mobile devices to edge devices), the process
stops; otherwise iterate the process from step 1.

Let us use Fig. 2 as an example to illustrate the algorithm.
There are four nodes in the network, where m and n are edge
devices and u and v are mobile devices. First, each node
calculates its own completion time. In Fig. 2a, since no videos
have been offloaded, the completion time is simply the sum of
the processing delay of videos. Then, we calculate T according
to (4). In (4),

∑
i∈U Tisi can be seen as the sum of workload at

each node and
∑

i∈U si is the processing power of all nodes.
Thus, T is the weighted average completion time, assuming
that the future offloading of videos does not incur any idle
time on any edge devices and videos can be fragmented to
any sizes. Therefore, T can be seen as a criterion to determine
video offloading at each step, which avoids overloading the
edge device.

As previously mentioned, videos that are offloaded from
mobile device v should be smaller than (Tv −T)sv . In Fig. 2a,
these videos are a and c. For video offloading, we first consider

the increase of the completion time of edge devices (i.e., the
joint consideration of the workload at the edge device and the
communication delay of the video). Moreover, we consider
the completion time itself. If it is longer than T after the
assignment of the video, we should choose a smaller video.
In Fig. 2a, since Da > Dc (recall D denotes the size of the
video) video a is considered for offloading first. Although edge
device n has more workload than m, the offloading of video
a results in less increase in the completion time for n than
for m (i.e., ∆Tn < ∆Tm and Tn + ∆Tn < T), so video a is
offloaded to edge device n. Note that ∆Tn (∆Tm) is the increase
in completion time when a is allocated to n (m), which can
be easily calculated using (1).

After that, we recalculate T. Since the offloading of video
a does not incur any idle time at edge device n, T is the
same as before. As in Fig. 2b, currently, Tmax = Tu and thus
the video offloading will be from mobile device u. Although
n has more workload than m (which means n may not have
to be idle in waiting for b), the offloading of video b to n
incurs more communication delay than m; i.e., cb,n = ca,n +
Db/ru,n, where ru,n denotes the transmission rate between u
and n, while cb,m = Db/ru,m, assuming ru,m = ru,n. Since
T < Tn + ∆Tn and T > Tm + ∆Tm, video b will be offloaded
to edge device m.

Due to the idle time of m incurred by the offloading of
video b, T increases as shown in Fig. 2c. To determine the
assignment of videos, the processing delay at edge devices
can be easily calculated, but the communication delay is more
complicated to compute as discussed before. For example, in
Fig. 2c, cc,m = max{ca,n, cb,m} + Dc/rv,m. So, video c is
assigned at m rather than n since Tn+∆Tn > T. The algorithm
terminates with this offloading as the remaining two videos
on mobile devices are large and the offloading of these videos
can no longer reduce Tmax.

The processing scheduling problem can be seen as balancing
the completion time at each node. Thus, T is employed as a
criterion for video offloading at each iteration, since T can
be treated as the optimal average completion time. Moreover,
at each step, we consider the increase of the completion
time at edge devices, which is a joint consideration of the
incurred communication delay and idle time at edge devices.
Therefore, by regulating video offloading by T and minimizing
the increase of completion time at edge devices, the greedy
algorithm can reduce Tmax step-by-step towards the optimum.

B. Performance Analysis

For each offloading step, the greedy algorithm attempts to
minimally increase the completion time for the edge device.

6

However, when the completion time with the minimal increase
is more than T, the greedy algorithm chooses to balance
the completion time among edge devices to avoid overload.
Moreover, due to the heterogeneity of both processing rates
and transmission rates, it is hard to give a tight bound on
the performance of the greedy algorithm. However, in the
following, we try to give some insights on the algorithm
performance with the variability of these rates.

Let t be the last time when all edge devices are busy (idle
time does count as busy), x =

∑
i∈V Di∑
j∈U sj

(x can be seen as the
average completion time of nodes without considering idle
time), and let y denote the processing delay of the video
with the largest size at the edge device, which is scheduled
to process the last offloaded video (assuming that Tmax is
determined by an edge device). Since T is explored as a
criterion to determine video offloading, together with (1), we
have

t ≤ x +
∑
i∈Uc

xsi
ri
, (5)

where, to simplify the analysis, we assume that videos of-
floaded at an edge device i are transmitted at a constant rate
ri from mobile devices. In (5),

∑
i∈Uc

xsi
ri

gives the worse case
of communication delay, assuming all videos are offloaded to
edge devices and incur idle time at edge devices. Therefore,
(5) gives the worse case of t.

Moreover, the last video offloading of the greedy algorithm
minimizes the completion time at the assigned edge device
among all edge devices. Therefore, by including the processing
delay and communication delay of the last video, we have

Tmax ≤ t + y +
∑
j∈Uc

ysj
rj
. (6)

By plugging (5) into (6), we have

Tmax ≤ x +
∑
i∈Uc

xsi
ri
+ y +

∑
j∈Uc

ysj
rj
. (7)

Let T∗ denote the optimal maximum completion time and
clearly we have

x ≤ T∗

y ≤ T∗.

Together with (7), we have

Tmax ≤ 2T∗(1 +
∑
i∈Uc

si
ri
). (8)

The approximation ratio of the greedy algorithm is given
in (8). We can see, from (8), when the processing rate of
edge devices is high, the communication delay has a great
impact on the completion time of edge devices. Thus, the
approximation ratio goes up. When the transmission rate is
high, the processing delay dominates the completion time
and then the approximation ratio approaches 2. Although the
bound on the performance is not tight, as will be shown in
Section VII, the greedy algorithm performs much better than
this bound.

Different from machine scheduling that has simple algo-
rithms with an approximation ratio only related to the number

of machine, our problem is much more difficult. The comple-
tion time is tightly coupled with not only processing rate but
also transmission rate. Moreover, the completion time has a
nonlinear relation with transmission rate. These make it almost
impossible to derive an approximation ratio independent of
processing rate and transmission rate.

For the computational complexity, as one video is offloaded
during each iteration, there are at most |V | iterations for the
greedy algorithm. For each iteration, the videos stored at
the mobile device with the maximum completion time are
iterated over all the edge devices to minimize the increase
in completion time. Therefore, the computational complexity
of the greedy algorithm is O(|U | |V |2).

C. Discussion

The greedy algorithm is a centralized approach and requires
the information of all the videos a priori. When a query
is initiated, the information (e.g., data size) about videos
stored in the network and related to the query needs to
be collected at one node, e.g. an edge device, to run the
greedy algorithm. The solution is then sent to the other nodes.
Alternatively, the information can be collected at each node
and each node may run the greedy algorithm. This is feasible,
since the information collected is small and the computational
complexity of the algorithm is low.

The solution of the processing scheduling problem deter-
mines which videos are offloaded from mobiles and edge
devices. It also determines the transmission sequence, but
this sequence is shown not to be trivial. For example, in
Fig. 2, for mobile device v, the sending sequence is a and
then c. However, v may not transmit c immediately after
a; it must be transmitted after m receives video b from
u. Therefore, when there is a video for which the mobile
device cannot locally determine the transmission start time, the
receiving edge device will inform the mobile device when it is
ready to receive. Although such coordination incurs additional
communication overhead (and idle time), the overhead is low
since there is at most one message for each offloaded video.

In NetVision, the greedy algorithm is run on edge devices
and hence edge devices control the mobile’s transmission
of the videos to the edge devices, as will be discussed in
Section VI. The greedy algorithm is designed for the scenario
where mobile and edge devices are stationary (e.g., wireless
surveillance systems) and the transmission rate between them
is steady (or varies slightly). To cope with the scenario with
high dynamics of transmission rate, we propose an adaptive
algorithm.

V. ADAPTIVE ALGORITHM

In this section, we consider the case where the transmission
rate between mobile and edge devices dynamically changes
during the on-demand querying of videos process (but assume
that all nodes stay connected to the network during the
process). So, we can capture the impact of the factors that
can influence the transmission rate, such as channel quality
and mobility, and hence the video processing performance.

7

Due to the dynamics of the transmission rate, the communi-
cation delay of offloaded videos also varies. This makes the
processing scheduling problem more difficult, because we do
not know how the transmission rate changes a priori. Since
the communication delay of an offloaded video is only known
after the transmission of the video is completed, it is better
to determine video offloading in realtime for such scenarios.
Therefore, we propose an adaptive algorithm that makes video
offloading decisions during runtime, through consideration
of the transmission rate, the communication delay and the
completion time.

A. The Algorithm
We assume the same query is issued to the network of

mobile and edge devices. Unlike the greedy algorithm which
determines video offloading beforehand, the adaptive algo-
rithm decides video offloading in runtime. Therefore, it is
more resilient to dynamic transmission rates, which is the main
advantage over the greedy algorithm.

Intuitively, to offload videos in runtime, the designed algo-
rithm should gradually reallocate videos from mobile devices,
balance the workload among edge devices, and prevent edge
devices from being overloaded. Moreover, the adaptive algo-
rithm should not incur too much communication overhead,
which would delay the video transmission. Based on these
considerations, the adaptive algorithm is designed to adapt to
the dynamics of transmission rate and reduce Tmax dynami-
cally as videos are transmitted and others are being processed.

To describe the adaptive algorithm, we first give the overall
workflow and then detail how the edge device decides whether
to accept offload requests from mobile devices and how the
mobile device decides to which edge device to offload the
video based on the replies from edge devices.

Upon receiving the query, each node identifies locally stored
videos related to the query and broadcasts the information
of the data size of each such video and its processing rate
to other nodes. Then, each node will have the information
to calculate the completion time of all other nodes in the
network, which includes the data size, the locality, and the
communication delay of each video, and the processing rate
of each node. Later, when video offload occurs, the locality
and communication delay of the video is updated. These
information is maintained and updated at each node. For each
mobile device, it also needs to probe each edge devices to
obtain current transmission rate (the probing will be discussed
in Section VI). After that, all nodes start to process videos.

For processing, each mobile device continuously processes
videos from small to large in size, while each edge device
can process any video it currently has in any order as the
order will not impact the completion time on the edge device.
For video offloading, each time a mobile device offloads the
largest video, for which it has not completed processing (i.e.,
it is possible to offload the video that is being processed).
When a mobile device is ready to offload videos (i.e., it is not
transmitting any video), it will broadcast an offload request
to inform all the edge devices. When edge devices receive
an offload request, they will add the request into a set of
unhandled requests.

When an edge device is ready to receive videos, (i.e., it is
not receiving any video), it will determine whether to accept
the received requests and reply to the accepted request. Based
on the replies from edge devices, the mobile device will
eventually determine to which edge device the video should
be offloaded. After making the decision, the mobile device
will broadcast a confirmation message to edge devices to
inform them of the selected edge device and the estimated
communication delay of the video, and then start transmitting
the video. When other edge devices receive the message,
they will mark the offload request from the mobile device as
handled and then update the locally maintained information,
i.e., changing the location of the video from the mobile device
to the edge device and add the estimated communication delay
for the video. Note that the estimated communication will be
replaced by the actual communication delay when the mobile
device finishes the offloading and sends out other request. This
process continues until all videos are processed.

An edge device needs to decide whether to accept received
requests when it is ready to receive videos. An edge device,
say m, which is not currently receiving a video, first calculates
the completion time of each node based on its maintained
information, and then calculates T according to (4). From
the set of unhandled requests, it selects the request from
the mobile device, u, that has the maximum completion time
among the set. Then, edge device m calculates the completion
time Tm and the increase ∆Tm if the video is offloaded to m.
If Tu = Tmax, edge device m will accept the offload request
when Tm < Tmax and then send Tm and ∆Tm to u. If Tu < Tmax,
edge device m will accept the request of u only if Tm ≤ T,
otherwise, m will skip the request.

A mobile device needs to decide to which edge device to of-
fload the video based on the replies from edge devices. Mobile
device u may receive multiple replies. It will choose the edge
device that has the minimal completion time if the received
completion times are more than T. Otherwise, it will select the
edge device whose completion time is less than T such that the
increase in the completion time of the chosen edge device is
minimal. As edge devices finish receiving an offloaded video
at different timestamps, a mobile device usually receives only
one reply during a short period time. Therefore, a timeout
(very short, e.g., a second) is set up after a mobile device
receives the first reply. The timeout is used only when there are
more edge devices than mobile devices or when to determine
the first video to offload, where a mobile device may receives
multiple replies. For all other cases, a mobile device will make
decision based on the first received reply, in order to not block
the offloading. Moreover, it is possible that a mobile device
will not receive a response from edge devices. This is because
the completion time of the mobile device is always shorter
than Tmax. Note that while waiting for the response from edge
devices, mobile devices continuously process videos. After
mobile device u selects the edge device, it will broadcast
a confirmation message and then start offloading the video.
When edge devices receive the message, they will mark the
request as handled and update locally maintained information
accordingly as discussed above. The unselected edge devices
that are ready to receive videos will continuously process the

8

m

n

u

v

b

a

Tt1

processed

processing

unprocessed

receiving
offload request

time t1

(a) u sends out an offload request

m

n

u

v

b

a

∆Tn

TTnt1

processed

processing

unprocessed

receiving

reply Tn and ∆Tn

time t1

(b) n replies u with Tn and ∆Tn

m

n

u

v

b

a

∆Tn

TTnt1

processed

processing

unprocessed

receiving

confirmation message

time t1

(c) u confirms b will be sent to n

Fig. 3. Illustration of the adaptive algorithm, where m and n are edge devices, and u and v are mobile devices.

unhandled requests if the request set is not empty.
See Fig. 3 as a simple example to illustrate the adaptive

algorithm. As in Fig. 3a, at time t1, mobile device u is ready to
offload videos and thus it sends out an offload request of video
b to edge devices m and n. Since m is currently receiving video
a, it will add the request into the set of unhandled requests.
Since n is not currently receiving a video, it will calculate Tn

and ∆Tn if video b is offloaded to itself based on the current
transmission rate between n and u, and then send them to
u as shown in Fig. 3b. When u receives the reply, it will
decide to offload b to n, because it only gets one reply. Before
offloading b to n, it will first send out a confirmation message
as in Fig. 3c. When n receives the confirmation message, it
will setup the connection to receive b. Meanwhile when m
receives the message, it will mark the offload request from u
as handled.

B. Discussion

Since, typically, there are more mobile devices than edge
devices in the network, an edge device is most likely to
decide whether to accept a request when it finishes receiving
a video rather than when it receives an offload request. As the
edge device selects the request of the mobile device that has
the maximum completion time among the set of unhandled
request, the adaptive algorithm will gradually decrease Tmax
by handling each offload request until it cannot be reduced.

The confirmation message from a mobile device is designed
to inform edge devices that the offload request has been
handled and the estimated communication delay of the video
to be offloaded, which will be used to calculate T at each
edge device when it handles other offload requests. The com-
munication delay is estimated based on the transmission rate
before offloading each video. Since the transmission rate may
vary during offloading, the actual communication delay will
be different than what is estimated. However, each edge device
will be notified of the completion of each video offload (by
the offloading mobile device) and then the other edge devices
can update their previously received estimation by the actual
communication delay. Therefore, the difference between the
actual completion time at each edge device and the estimated
will only vary by the actual communication delay of one
video. Thus, it only slightly impacts the criterion T and the
performance of the adaptive algorithm.

As message overhead can delay video offloading, the adap-
tive algorithm is designed to produce messages with as little
overhead as necessary. At the beginning of video processing,
each node will broadcast a message including the information
of locally stored videos and thus there will be |U | messages.
As discussed before, the edge device will most likely handle

the request after receiving a video, and thus there is most
likely one reply for each request. Therefore, for each offloaded
video, there will be three messages, i.e., request, reply and
confirmation. In the worst case that all videos are offloaded
to edge devices, the overall message overhead of the adaptive
algorithm is 3|V | + |U |. The small number of messages is
sufficient to obtain all the information to determine video
offloading. Moreover, a node needs to compute the completion
time of all nodes when it (for edge devices) decides to accept
the offload request or when it (for mobile devices) selects the
edge device. However, the computational overhead is low, i.e.,
|V |. For the worst case that all videos are offloaded, the sum
of computation overhead of all nodes is only 2|V |2.

As edge devices can also communicate with each other,
we could consider transfer of videos among edge devices
to balance the workload. However, we decided against this,
because video offloading among edge devices incurs additional
communication delay. That means a video might be transferred
multiple times before being processed and thus increase the
communication delay. As a result, it might also increase the
communication delay of other videos due to the constraint
that each node can only send or receive one video at a time.
However, the adaptive algorithm requires only one transfer
for each offloaded video, and instead of balancing workload
by transferring videos among edge devices, it balances the
workload when offloading videos from mobile devices to edge
devices.

The adaptive algorithm estimates the communication delay
of each offloaded video based on the transmission rate just
before offloading and makes video offloading decision in
realtime. Therefore, it is more suitable for the scenarios
where the transmission rate dynamically changes during video
processing. Moreover, the adaptive algorithm is executed based
on the interactions between the mobile device and edge device,
and thus NetVision needs the corresponding component for
each as will be discussed in Section VI.

VI. NETVISION

We have built NetVision, a system of on-demand infor-
mation query and video processing. NetVision consists of
two components: NetVision edge and NetVision mobile as
illustrated in Fig. 4.
NetVision edge is running on edge devices and implemented
in C++ based on Linux. Inside NetVision edge, we built a
simple query system with a GUI using Qt to issue queries
and collect responses. When a query is initiated, it first sends
the query to all other network nodes using a messaging
service, which is built using Google Protocol Buffers. The
information sent back from other nodes is gathered at a

9

Mobile Video
Processing

Service

Uplink Rate
Probe

Edge Video
Processing

Service

Optimization
Engine

Video Queue

Messaging
Service

NetVision Edge

Messaging
Service

Optimization
Engine

Video Queue
/Dispatcher

NetVision Mobile

Protocol Buffers

Offloading
Service

Video
Receiver

Videos

Node/Video
Information
Collector

Query System
(GUI)

Fig. 4. Architecture of NetVision.

node/video information collector. The information includes
the node’s processing rate, transmission rates, sizes of videos
related to the query, etc. This information is the input for
the optimization engine. The optimization engine adopts the
greedy algorithm or adaptive algorithm for different network
scenarios to determine how to process videos across the
network, and then it behaves accordingly for signaling and
message passing, as discussed in Section IV and V.

The video queue holds local videos and videos received
from mobile devices. We currently implemented our video
processing approach for object detection and recognition based
on AlexNet [34] (a CNN) using Caffe [35] [36] (a deep
learning framework) as the video processing service on both
NetVision edge and mobile. The difference between them is
that video processing on the NetVision edge can be greatly
accelerated by powerful GPUs. The results of video processing
across all the nodes are collected at the query system to
respond to the query.
NetVision mobile is currently implemented in Java based on
Android. In addition to the similar components with NetVision
edge, NetVision mobile has a unique component, the uplink
rate probe. Similar to [13], each time NetVision mobile
offloads a video, it takes the opportunity to obtain an estimate
of the uplink rate. When the estimate is not fresh enough, it
conducts a measurement by sending 64KB data over TCP to
an edge device to obtain a fresh estimate.

In our current implementation, the greedy algorithm is
run only on the NetVision edge. The optimization engine
on NetVision mobile only performs interactions with the
NetVision edge for the adaptive algorithm. Moreover, the
video dispatcher controls local video processing and video
offloading according to the determined processing schedule
and signaling from the NetVision edge. Since none of off-
the-shelf mobile devices support GPU acceleration for deep
learning, video processing on the NetVision mobile is run only
on CPU.

VII. PERFORMANCE EVALUATION

In this section, we first evaluate the proposed algorithms
by extensive simulations based on the empirically gathered
measurements. Then we investigate the system performance
on a small testbed in stationary networks and also in mobile
networks by plugging the small testbed into an emulated
mobile environment.

A. Algorithm Performance
1) Processing Delay: First, we evaluate the processing

delay of videos in terms of data size on mobile and edge

0 20 40 60 80 100 120
0

20

40

60

p
ro
ce
ss
in
g
d
el
ay

(s
ec
on

d
)

video size (MB)

mobile device
edge device

(a) processing delay vs video size

0 20 40 60 80 100 120
0

20

40

60

co
m
p
le
ti
on

ti
m
e
(s
ec
on

d
)

video size (MB)

mobile device
edge device

(b) completion time vs video size

Fig. 5. Processing delay and completion time of videos with different sizes for
mobile device and edge device, where videos have the resolution 1920×1080,
bit rate 16Mbps, frame rate 30fps, and the transmission rate between mobile
device and edge device is 16MBps.

devices. We ran our video processing approach on both tablets
(Nexus 9) and an edge device implementation (Dell Precision
T7500 with GeForce GTX TITAN X 12 GB GPU). We
took several videos with different sizes using the tablet and
processed them on both the tablet and edge device. Fig. 5a
gives the comparison of the processing delay between the
tablet and edge device. From Fig. 5a, we can see that GPU
can greatly accelerate video processing. For a video of 60MB,
the tablet takes about 30 seconds, whereas the edge device
takes only about 0.5 second. Both linearly increase with the
data size of videos. When taking the communication delay of
videos into consideration, as shown in Fig. 5b, the completion
time of processing each video (offloaded from the tablet) on
the edge device is still much less than that of the tablet. Note
that the specifications of videos, such as resolution, frame rate
and bit rate, may affect the processing delay.

2) Greedy Algorithm vs Optimum: In order to evaluate the
performance of the proposed algorithms, we setup a simulation
environment. The videos are generated with different data
sizes following normal distributions with different µ and
σ. To capture the heterogeneity of the processing rate, the
processing rates of mobile and edge devices are set uniformly
and randomly to between [γsd, sd] and between [γsc, sc],
respectively, where sd denotes the maximum processing ratio
for mobile devices and sc denotes the maximum processing
rate of edge devices. Also, the transmission rate between
a mobile device and an edge device is set uniformly and
randomly to [γr, r]. The number of videos |V |, the number of
mobile devices |Ud |, the number of edge devices |Uc |, r , µ, σ,
γ, sd and sc are system parameters for simulations. We used
the following default settings for the parameters: |V | = 300,
|Ud | = 20, |Uc | = 3, r = 12MB/s, µ = 50MB, σ = 20MB,
γ = 0.6, sd = 2MB/s and sc = 100MB/s, where the settings
of sd and sc correspond to the measurements in the previous
section.

We evaluate the greedy algorithm and compare it with
the optimum achieved by an exhaustive search in various
settings. For each setting, we generate one hundred instances
according to the randomness of simulation setup, including
video size, processing rate, and transmission rate. The two
solutions run on these instances. The performance is compared
in terms of Tmax/T∗ to demonstrate how the greedy algorithm
approximates the optimum, and the value of Tmax is also
illustrated.

10

of videos

200 300 400 500 600 700 800
1.0

1.1

1.2

1.3

0

400

800

(a) effect of |V |
of mobile devices

10 15 20 25 30 35 40

T
m
ax
/
T

∗

1.0

1.1

1.2

1.3

T
m
ax

(s
)

0

200

400

(b) effect of |Ud |

of video-clouds

1 2 3 4 5 6 7

T
m
ax
/
T

∗

1.0

1.1

1.2

1.3

T
m
ax

(s
)

0

200

400

(c) effect of |Uc |

video size (MB)
40 50 60 70 80 90 100

T
m
ax
/
T

∗

1.0

1.1

1.2

1.3

T
m
ax

(s
)

0

200

400

(d) effect of µ

transmission rate (MB/s)
4 8 12 16 20 24 28

T
m
ax
/
T

∗

1.0

1.1

1.2

1.3

T
m
ax

(s
)

0

200

400

(e) effect of r
processing rate (MB/s)

40 60 80 100 120 140 160
T

m
ax
/
T

∗

1.0

1.1

1.2

1.3

T
m
ax

(s
)

100

200

300

(f) effect of sc

processing rate (MB/s)
2 3 4 5 6 7 8

T
m
ax
/
T

∗

1.0

1.1

1.2

1.3

T
m
ax

(s
)

0

100

200

300

(g) effect of sd

γ (%)
100 90 80 70 60 50 40

T
m
ax
/
T

∗

1.0

1.1

1.2

1.3

T
m
ax

(s
)

0

100

200

300

(h) effect of γ
Fig. 6. Comparison between the greedy algorithm and the optimum in terms of Tmax/T∗ and the value of Tmax, where the default setting is |V | = 300,
|Ud | = 20, |Uc | = 3, µ = 50MB, σ = 20MB, r =12MB/s, sd = 2MB/s, sc = 100MB/s and γ = 0.6.

Fig. 6 demonstrates the effects of system parameters on
the performance of the greedy algorithm. For each evaluated
parameter, all other parameters use the default settings. From
Fig. 6a, we can see Tmax/T∗ slightly increases with the
increased number of videos. When using 200 videos, the
greedy algorithm is less than 10% worse than the optimum,
and it is less than 20% when using 800 videos. The increase
is caused by increased video offloading when there are more
videos to be processed. Correspondingly, when there are more
mobile devices in the network, each mobile device has fewer
videos to process and thus less video offloading. Therefore,
the greedy algorithm performs better as the number of mobile
device increases in Fig. 6b. When there is only one edge device
in the network, the greedy algorithm achieves the optimum
shown in Fig. 6c. The difference rises when the number of
edge devices goes up, but it tends to flatten out when the
number of edge device increases further.

In Fig. 6d, the greedy algorithm performs close to the
optimum in the settings with different average video sizes.
Fig. 6e demonstrates the effect of transmission rates. When
the transmission rate increases, mobile devices tend to offload
more videos to edge devices as offloading videos costs less
than before. This leads to an increased deviation between the
greedy algorithm and the optimum, though both Tmax and T∗
decrease.

The completion time of edge devices is determined by the
processing delay and communication delay of videos. When
the processing rate of edge devices increases, the processing
delay decreases and thus the greedy algorithm performs better
as in Fig. 6f. Moreover, Tmax/T∗ also declines when mobile
devices are more computationally powerful as indicated in
Fig. 6g, because fewer videos are offloaded when mobile
devices have higher processing rates. The effect of the diversity
of processing rates and transmission rates is captured in
Fig. 6h; i.e., such diversity leads to slightly increased Tmax
and deviation from the optimum.

In summary, through extensive simulations, we can see
that the performance of the greedy algorithm is close to the
optimum in various settings (no more than 20% worse than
the optimum) and it is much less than the theoretical upper
bound as in (8).

3) Greedy Algorithm vs Baseline: We also compare the
greedy algorithm with a baseline scheme that does not con-

sider communication delay and iteratively offloads a video
from the mobile device that has the maximum completion
time to the edge device that has the minimum. As illustrated
in Fig. 7, the greedy algorithm performs much better than
the baseline. When the transmission rate increases, the impact
of the communication delay on the completion time decreases
and thus the difference between these two algorithms narrows,
as in Fig. 7a. Moreover, the baseline is more sensitive to the
increased diversity of processing rates and transmission rates
as indicated in Fig. 7b. Therefore, we can conclude that the
greedy algorithm that considers both processing delay and
communication delay is much better than the baseline that
considers only processing delay.

4) Adaptive Algorithm vs Greedy Algorithm: The adaptive
algorithm is designed for the scenarios where the transmission
rate varies during video processing. To model the dynamics
of the transmission rate, we adopt a Markov chain [37]. Let R
denote a vector of transmission rates R = [r0, r1, . . . , rl], where
ri < ri+1. The Markov chain moves at each time unit. If the
chain is currently in rate ri , then it can change to adjacent
rate ri−1 or ri+1, or remain in the current rate with the same
probability. Therefore, for a given vector, e.g., of four rates,
the transition matrix can be defined as

P =

r0 r1 r2 r3

r0

r1

r2

r3

1/2
1/3
0
0

1/2
1/3
1/3
0

0
1/3
1/3
1/2

0
0

1/3
1/2

.

In the simulations, the transmission rate between a mobile
device and edge device is initially set to a randomly selected

transmission rate (MB/s)
4 8 12 16 20 24

T
m
ax
(s
)

0

400

800

1200

1600

baseline
greedy

(a) effect of r
γ (%)

100 90 80 70 60 50 40

T
m
ax

(s
)

0

400

800

1200

baseline
greedy

(b) effect of γ
Fig. 7. Comparison between greedy algorithm and baseline in terms of Tmax,
where the default setting is |V | = 300, |Ud | = 20, |Uc | = 3, µ = 50MB,
σ = 20MB, r =12MB/s, sd = 2MB/s, sc = 100MB/s and γ = 0.6.

11

vector of transmission rates (MB/s)
[16] [12,16] [8,12,16] [4,8,12,16] [2,4,8,12,16]

100

150

200

250
greedy
adaptive

(a) effect of static transmission rates
vector of transmission rates (MB/s)

[16] [12,16] [8,12,16] [4,8,12,16] [2,4,8,12,16]

100

150

200

250
greedy
adaptive

(b) effect of dynamic transmission rates
time unit (s)

1 5 10 30 60

100

150

200

250
greedy
adaptive

(c) effect of time unit
Fig. 8. Comparison between adaptive algorithm and greedy algorithm in terms of Tmax, where the default setting is |V | = 100, |Ud | = 10, |Uc | = 2,
µ = 50MB, σ = 20MB, sd = 2MB/s, sc = 100MB/s, γ = 0.6, t = 5s, and R = [4, 8, 12, 16]. The percentage gives the ratio of greedy algorithm over adaptive
algorithm in terms of Tmax.

rate from R and it dynamically changes according to the
transition matrix each time unit t. The greedy algorithm
determines video offloading and transmission sequence based
on the initially assigned transmission rates before processing
videos. Then, the simulation runs and produces the runtime
Tmax for the greedy algorithm. The adaptive algorithm runs
during video processing and determines video offloading dur-
ing runtime of simulations.

First, we compare the adaptive algorithm with the greedy
algorithm under static transmission rates. As shown in Fig. 8a,
the greedy algorithm outperforms the adaptive algorithm in
various vectors of transmission rates. Note that the percentage
in Fig. 8 gives the ratio of Tmax of the greedy algorithm over
the adaptive algorithm. Moreover, the difference between the
greedy algorithm and adaptive algorithm expands with the
increased diversity of transmission rates, i.e., the ratio changes
from 96% to 78%. In the adaptive algorithm, edge devices
can only accept the offload request after receiving previously
offloaded video to adapt to the variation of transmission rate.
Therefore, when a mobile device selects an edge device for
offloading, the edge devices that are currently receiving videos
are not considered. However, the greedy algorithm makes
offloading decisions beforehand and considers every edge
device at each step. Therefore, the greedy algorithm performs
better under static transmission rates.

When transmission rates change dynamically, the perfor-
mance of the greedy algorithm and the adaptive algorithm
is shown in Fig. 8b, where the time unit t = 5s. When
transmission rates are more stable, e.g., R = [16] or [12, 16],
the greedy algorithm performs better than the adaptive al-
gorithm. When transmission rates are more dynamic, e.g.,
R = [8, 12, 16], [4, 8, 12, 16] or [2, 4, 8, 12, 16], the adaptive
algorithm outperforms the greedy algorithm. Fig. 8c gives the
performance comparison in terms of time unit of the Markov
chain. As short time intervals produce a dynamic transmission
rate during video processing, the adaptive algorithm performs
better when time interval is short, and vice versa.

In summary, as expected, the greedy algorithm is preferred
for the scenarios where the transmission rate is steady, while
the adaptive algorithm is more suitable for the scenarios where
the transmission rate is dynamic.

B. System Performance

1) Stationary Network: We deployed NetVision on a small
testbed that includes four Nexus 9 tablets and the edge device
implementation which are connected through a WiFi router
which supports 802.11b/g/n, as shown in Fig. 9a. In order
to obtain different uplink data rates for each tablet, the four

tablets are spread with different distances to the WiFi router
and are kept stationary. Queries are issued from the edge
device to the tablets, targeting different objects. To respond
to a query, all videos stored on the testbed will be processed.
For the video processing implementation, frames are extracted
from a video and then object detection is performed on the
frames.

In the experiments, we configured NetVision to run different
methods, which include the greedy algorithm, the adaptive
algorithm, local (videos are processed locally), and edge
(all videos are offloaded to the edge device for processing).
Experiments are performed on a small set of videos (21 clips
with a bit rate of about 16Mbps and frame rate 30fps, average
size 16 MB). The sizes and the distribution of the videos are
illustrated in Fig. 9b. The distribution of the 21 video clips on
the tablets are generated following a normal distribution.

We ran the experiment 10 times (issued 10 queries) using
each method and measured the query response time, which
is the time elapsed from the issue of a query to when all
processing results are collected at the edge device. We can see,
from Fig. 9c, both the greedy algorithm and adaptive algorithm
greatly outperform other two. The deviation of edge is larger
than others, because all videos are offloaded to the edge device.
This also implicitly indicates the fluctuation of uplink data
rates during video offloading. The greedy algorithm, however,
still outperforms the adaptive algorithm. This shows that the
greedy algorithm can tolerate a small fluctuation of uplink data
rates.

Moreover, the greedy algorithm offloads more videos than
the adaptive algorithm in the experiments, as shown in Table I.
The difference comes from the different strategies they adopt
to determine the offloading. The greedy algorithm determines
an offloaded video from a subset of videos a mobile device
has, while the adaptive algorithm always chooses to offload
the largest video from a mobile device. Therefore, the greedy
algorithm usually offloads more videos than the adaptive algo-
rithm. However, offloading more videos does not necessarily

(a) testbed

#1 #2 #3 #4
0

40

80

120

da
ta

siz
es

of
vi
de
os

(M
B)

(b) video distribution on
four tablets

local edge greedy adaptive
0

40

80

51 49.5

24 25.7T m
ax

(s)

(c) completion time of
different methods

Fig. 9. Experiment setup, video distribution, and performance of different
methods on the testbed.

12

TABLE I
VIDEOS PROCESSED AT DIFFERENT LOCALITIES ON TESTBED

On the Edge Locally

Greedy Algorithm 7 14
Adaptive Algorithm 4/5 17/16

mean better performance, as it is affected by dynamics of the
uplink data rate, which we will discuss in Section VII-B2.
In addition, the algorithms may offload a different number of
videos during each run (e.g., the adaptive algorithm offloaded
4 or 5 videos to the edge device in the experiments), which
mainly depends on the uplink data rate at runtime.

Based on the experimental results on the testbed, we con-
clude that although the uplink data rate fluctuates in stationary
networks, the greedy algorithm obtains better performance
than the adaptive algorithm.

2) Mobile Network: In order to evaluate NetVision in
mobile networks (featured with more dynamic uplink data
rates), we setup an emulation environment using CORE [38]
and EMANE [39]. The basic idea is to let real data traffic
between the tablets and edge device go through the emulated
mobile environment, and thus investigate the performance of
NetVision in mobile networks.
Emulation Setup. As depicted in Fig. 10, we first connect
each tablet to a WiFi router via the wireless link, and wire
each WiFi router to the workstation. On the workstation, we
setup a virtual machine (VM), which is bridged with the
four physical network interfaces connected with the WiFi
routers. The emulator CORE is running on the VM. In CORE,
we use the physical interface tool (RJ45) to connect each
network interface of the VM. By these configurations, the
four tablets are connected into CORE and represented by four
wireless nodes in the emulation. Similarly, the edge device
(workstation) is connected into CORE via a virtual network
interface between the workstation and VM, also represented
by a wireless node in the emulation.

Using the configurations above, all network traffic between
the tablets and edge device goes through CORE. Further, we
setup a wireless network of the five nodes in CORE, and we
use EMANE to emulates physical and data link layers using its
pluggable PHY and MAC models. Currently, the MAC layer is
configured with 802.11b/g, which is the WLAN mode with the
highest data rate that EMANE can support, and the unicast rate
is set to 54Mbps. The PHY layer is configured with 20MHz
bandwidth at the frequency of 2.347GHz, and other parameters
are set using default values.

The dimension of the emulation area is 200×200m2, the

P
h

y
s
ic

a
l
N

e
tw

o
rk

Ê
In

te
rf

a
c
e

s

Wireless

W
ired

CORE

Workstation

NetVision

Edge

V
ir
tu

a
l
N

e
tw

o
rk

Ê
In

te
rf

a
c
e

Virtual Machine

NetVision Mobile Mobility
Wireless
Channels

Fig. 10. Emulation Setup. The tested is plugged into the emulation. All
network traffic between NetVision edge and NetVision mobile goes through
the emulated mobile network.

TABLE II
MOBILITY SETTINGS

Random
Waypoint

Random
Walk

Manhattan
Grid

Area 200×200 m2

Duration 240 seconds
Min/Max Speed 5/10 m/s
Max Pause 10 seconds

Grids 10×10

node of the edge device is statically placed at the center,
and all other four nodes are mobile. Therefore, the maximum
possible distance between a mobile node and the edge device
is about 140m, which matches the approximate outdoor range
of 802.11b/g.

To add mobility into the emulation, we use BonnMotion
[40] to generate movements for the four mobile nodes. We
consider three mobility models, which are random waypoint,
random walk, and Manhattan grid. The parameter settings
of BonnMotion to generate these movements are shown in
Table II. The movement duration is set to 240s, which means
the movement is repeated every 240 seconds. However, as
we will see, processing all the videos takes much less time
than 240 seconds, and thus nodes can finish processing videos
during one run. The min/max node speed is set to 5/10 m/s,
and the maximum pause is 10 seconds. For Manhattan grid,
the area is divided into 10×10 grids.

In the emulation, to eliminate the effect of the real wireless
link between a tablet and WiFi router on the path between
the tablet and edge device, we put the pair of a tablet and
WiFi router together and then place each pair in a different
room to avoid interferences. By doing so, we can get a higher
throughput for the real wireless link and thus make the data
rate between a tablet and the edge device bottlenecked at the
emulated wireless link between the mobile node and edge node
in CORE. In addition, the WiFi router supports 802.11b/g/n,
while the WLAN in CORE only supports 802.11b/g. There-
fore, overall, the wireless link in CORE regulates the data rate
between a tablet and the edge device, and hence node mobility
in CORE can generate a dynamic data rate between the tablet
and edge device.
Experiments. Similar to the experiments in Section VII-B1,
we configured NetVision to run different methods for the
experiments. For each method under each mobility pattern, we
issued 10 queries from the edge device and then measured the
query response time. The results are shown in Fig. 11. As the
data rate between a mobile device and the edge device is low
in emulation, processing all the videos at the edge device takes
very long time (i.e., several minutes). For clarity of illustration,
we do not include it in Fig. 11. Moreover, since the video
distribution on the tablets remains the same as in Fig. 9b,
processing all videos locally takes the same time, compared

local greedy adaptive
0

40

80

51
42.3 39.6

51
41.3 38.3

51
42 39.2

T m
ax

(s)

Random Waypoint Random Walk Manhattan Grid

Fig. 11. Comparison among local, greedy algorithm, and adaptive algorithm
in terms of Tmax in emulation under different mobility patterns.

13

to Fig. 9c.
We can see, from Fig. 11, the adaptive algorithm out-

performs the greedy algorithm under all the three mobility
patterns. Moreover, the mobility patterns only slightly affect
the performance. Compared to Fig. 9c, the query response
time increases more than 50% for both algorithms, because
the uplink data rate between the mobile device and edge
device in emulation is lower than in the experiment on the
testbed. Due to the lower uplink data rate, fewer videos
are offloaded, as depicted in Table III for both the greedy
algorithm and adaptive algorithm, compared to Table I. Al-
though the greedy algorithm still offloads more videos than the
adaptive algorithm, its performance is worse than the adaptive
algorithm. This is because the greedy algorithm makes the
offload decisions beforehand. However, due to the dynamics
of uplink data rates, these decisions may not be optimal after
the change of uplink data rates. The offloaded videos may
take much longer than expected to arrive at the edge device.
Therefore, offloading more videos does not necessarily result
in better performance. On the contrary, the adaptive algorithm
makes the offload decision at runtime after each offloading is
completed. Therefore, it is less sensitive to the change of data
rates.

Based on the experimental results in emulation, we conclude
that in mobile networks, where the uplink data rates are more
dynamic, the adaptive algorithm obtains better performance
than the greedy algorithm.

In summary, the experiments in stationary and mobile
networks verify the advantages of the greedy algorithm and
adaptive algorithm over other methods. By adopting these
two algorithms, NetVision can optimize on-demand video
processing in different network scenarios.

VIII. DISCUSSION

NetVision is designed to process videos on-demand across a
wireless network that consists of mobile and edge devices for
information retrieval using deep learning (i.e., CNNs). NetVi-
sion works as a distributed computing platform to optimize the
query response time. Currently, NetVision employs AlexNet
and Caffe for deep-learning based video processing, but it
is compatible with any deep learning model and framework.
Moreover, NetVision can be easily adapted to mobile GPUs
whenever they are available for acceleration of deep learning
on mobile devices. It is worth noting that although mobile
GPUs can accelerate the computing of deep learning, the
computational capability of mobile GPUs is still far behind
powerful workstation GPUs (e.g., Tegra K1 vs TITAN Xp).
Therefore, the gap of computational capability between the
mobile device and edge device still exists and thus NetVision
can still provide improved performance in such networks.
Limitations. NetVision currently has several limitations.
NetVision only supports one query at a time. Supporting
simultaneous queries is challenging (as it changes the problem
formulation) and will be our future work. Energy consump-
tion is also important for NetVision, especially when mobile
devices are energy-constrained. We will also consider the joint
optimization of query response time and energy in future

TABLE III
VIDEOS PROCESSED AT DIFFERENT LOCALITIES IN EMULATION

On the Edge Locally

Greedy Algorithm 3 18
Adaptive Algorithm 2 19

work. In wireless networks, missed messages and connectivity
disruptions happen often. How to quickly cover from these
circumstances is also very important, which needs careful
systematic design and will also be our future work.

IX. CONCLUSION

In this paper, we designed NetVision, a system to perform
distributed video processing across a wireless network to
answer queries and optimize the query response time. We
formulated the processing scheduling problem, which is a
strongly NP-hard problem. To deal with this, we designed
a greedy algorithm with bounded performance. To handle
the dynamics of the transmission rate between mobile and
edge devices, we further proposed an adaptive algorithm. We
built and deployed NetVision on a small testbed. Based on
the empirically gathered measurements, we first performed
simulations to extensively evaluate the proposed algorithms.
Results show that the performance of the greedy algorithm
is close to the optimum and much better than other meth-
ods, and the adaptive algorithm performs better with more
dynamic transmission rates. We also performed experiments
on the testbed to examine the realized system performance in
stationary networks. We further built an emulation environ-
ment for mobile networks. By plugging the testbed into this
environment, we further confirmed the benefit of NetVision in
mobile networks.

ACKNOWLEDGMENT

This work was supported in part by Network Science
CTA under grant W911NF-09-2-0053, NSF China under grant
61872009, and Hikvision. A preliminary version of this work
appeared in the Proceedings of IEEE ICNP 2016 [41].

REFERENCES

[1] Y. Jiang, X. Xu, P. Terlecky, T. Abdelzaher, A. Bar-Noy, and R. Govin-
dan, “Mediascope: selective on-demand media retrieval from mobile
devices,” in IPSN, 2013.

[2] T. Yan, V. Kumar, and D. Ganesan, “Crowdsearch: exploiting crowds for
accurate real-time image search on mobile phones,” in MobiSys, 2010.

[3] C. Qin, X. Bao, R. Roy Choudhury, and S. Nelakuditi, “Tagsense: a
smartphone-based approach to automatic image tagging,” in MobiSys,
2011.

[4] Y. Wang, W. Hu, Y. Wu, and G. Cao, “Smartphoto: a resource-
aware crowdsourcing approach for image sensing with smartphones,”
in MobiHoc, 2014.

[5] Y. Hua, H. Jiang, and D. Feng, “Real-time semantic search using ap-
proximate methodology for large-scale storage systems,” in INFOCOM,
2015.

[6] R. LiKamWa, B. Priyantha, M. Philipose, L. Zhong, and P. Bahl,
“Energy characterization and optimization of image sensing toward
continuous mobile vision,” in MobiSys, 2013.

[7] M.-R. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall, and R. Govin-
dan, “Odessa: enabling interactive perception applications on mobile
devices,” in MobiSys, 2011.

[8] P. Simoens, Y. Xiao, P. Pillai, Z. Chen, K. Ha, and M. Satyanarayanan,
“Scalable crowd-sourcing of video from mobile devices,” in MobiSys,
2013.

14

[9] P. Jain, J. Manweiler, A. Acharya, and K. Beaty, “Focus: clustering
crowdsourced videos by line-of-sight,” in SenSys, 2013.

[10] Z. Chen, W. Hu, K. Ha, J. Harkes, B. Gilbert, J. Hong, A. Smailagic,
D. Siewiorek, and M. Satyanarayanan, “Quiltview: a crowd-sourced
video response system,” in HotMobile, 2014.

[11] F. Chen, C. Zhang, F. Wang, and J. Liu, “Crowdsourced live streaming
over the cloud,” in INFOCOM, 2015.

[12] Y. Wu and G. Cao, “Videomec: A metadata-enhanced crowdsourcing
system for mobile videos,” in IPSN, 2017.

[13] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: making smartphones last longer with
code offload,” in MobiSys, 2010.

[14] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair:
Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading,” in INFOCOM, 2012.

[15] W. Gao, Y. Li, H. Lu, T. Wang, and C. Liu, “On exploiting dynamic
execution patterns for workload offloading in mobile cloud applications,”
in ICNP, 2014.

[16] F. Hao, M. Kodialam, T. Lakshman, and S. Mukherjee, “Online alloca-
tion of virtual machines in a distributed cloud,” in INFOCOM, 2014.

[17] Q. Wang and K. Wolter, “Reducing task completion time in mobile
offloading systems through online adaptive local restart,” in ICPE, 2015.

[18] Y.-H. Kao, B. Krishnamachari, M.-R. Ra, and F. Bai, “Hermes: Latency
optimal task assignment for resource-constrained mobile computing,” in
INFOCOM, 2015.

[19] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng, “Quantized convolutional
neural networks for mobile devices,” in CVPR, 2016.

[20] Y.-D. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin, “Compression
of deep convolutional neural networks for fast and low power mobile
applications,” in ICLR, 2016.

[21] N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, L. Jiao, L. Qen-
dro, and F. Kawsar, “Deepx: A software accelerator for low-power deep
learning inference on mobile devices,” in IPSN, 2016.

[22] P. Georgiev, N. D. Lane, K. K. Rachuri, and C. Mascolo, “Leo:
Scheduling sensor inference algorithms across heterogeneous mobile
processors and network resources,” in MobiCom, 2016.

[23] B. Fang, X. Zeng, and M. Zhang, “Nestdnn: Resource-aware multi-
tenant on-device deep learning for continuous mobile vision,” in Mobi-
Com, 2018.

[24] M. Xu, M. Zhu, Y. Liu, F. X. Lin, and X. Liu, “Deepcache: Principled
cache for mobile deep vision,” in MobiCom, 2018.

[25] T. Y.-H. Chen, L. Ravindranath, S. Deng, P. Bahl, and H. Balakrishnan,
“Glimpse: Continuous, real-time object recognition on mobile devices,”
in SenSys, 2015.

[26] T. Zhang, A. Chowdhery, P. V. Bahl, K. Jamieson, and S. Banerjee, “The
design and implementation of a wireless video surveillance system,” in
MobiCom, 2015.

[27] S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wolman, and A. Krish-
namurthy, “Mcdnn: An approximation-based execution framework for
deep stream processing under resource constraints,” in MobiSys, 2016.

[28] C.-C. Hung, G. Ananthanarayanan, P. Bodik, L. Golubchik, M. Yu,
P. Bahl, and M. Philipose, “Videoedge: Processing camera streams using
hierarchical clusters,” in SEC, 2018.

[29] N. Fisher, J.-J. Chen, S. Wang, and L. Thiele, “Thermal-aware global
real-time scheduling on multicore systems,” in RTAS, 2009.

[30] A. Das, A. Kumar, and B. Veeravalli, “Reliability and energy-aware
mapping and scheduling of multimedia applications on multiprocessor
systems,” IEEE Transactions on Parallel and Distributed Systems,
vol. 27, no. 3, pp. 869–884, 2016.

[31] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning
spatiotemporal features with 3d convolutional networks,” in ICCV, 2015.

[32] J. K. Lenstra, A. H. G. R. Kan, and P. Brucker, “Complexity of machine
scheduling problems,” Annals of Discrete Mathematics, vol. 1, pp. 343–
362, 1977.

[33] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
elastic execution between mobile device and cloud,” in EuroSys, 2011.

[34] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in NIPS, 2012.

[35] “Caffe,” http://caffe.berkeleyvision.org/.
[36] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,

S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” in MM, 2014.

[37] A. Fu, P. Sadeghi, and M. Médard, “Dynamic rate adaptation for
improved throughput and delay in wireless network coded broadcast,”
IEEE/ACM Transactions on Networking, vol. 22, no. 6, pp. 1715–1728,
2014.

[38] “CORE,” https://www.nrl.navy.mil/itd/ncs/products/core.

[39] “EMANE,” https://www.nrl.navy.mil/itd/ncs/products/emane.
[40] “BonnMotion,” https://sys.cs.uos.de/bonnmotion/.
[41] Z. Lu, K. S. Chan, R. Urgaonkar, and T. La Porta, “On-demand video

processing in wireless networks,” in ICNP, 2016.
Zongqing Lu is an Assistant Professor in the De-
partment of Computer Science, Peking University.
He received the B.S. and M.S. degrees from South-
east University, China, and the Ph.D. degree from
Nanyang Technological University, Singapore, 2014.
Prior to joining Peking University in 2017, he was a
postdoc in the Department of Computer Science and
Engineering, Pennsylvania State University. His re-
search interests fall at the intersection of distributed
systems and machine learning.

Kevin Chan is research scientist with the Com-
putational and Information Sciences Directorate at
the U.S. Army Research Laboratory. Previously, he
was an ORAU postdoctoral research fellow at ARL.
His research interests are in network science and
dynamic distributed computing, with past work in
dynamic networks, trust and distributed decision
making and quality of information. He has been an
active researcher in ARL’s collaborative programs,
the Network Science Collaborative Technology Al-
liance and Network and Information Sciences Inter-

national Technology Alliance. Prior to ARL, he received a PhD in Electrical
and Computer Engineering (ECE) and MSECE from Georgia Institute of
Technology. He also received a BS in ECE/EPP from Carnegie Mellon
University.

Rahul Urgaonkar is an Operations Research Sci-
entist with the Modeling and Optimization group
at Amazon. Previously, he was with IBM Research
where he was a task leader on the US Army
Research Laboratory (ARL) funded Network Sci-
ence Collaborative Technology Alliance (NS CTA)
program. He was also a Primary Researcher in
the US/UK International Technology Alliance (ITA)
research programs. His research is in the area of
stochastic optimization, algorithm design and control
with applications to communication networks and

cloud-computing systems. Dr. Urgaonkar obtained his Masters and PhD de-
grees from the University of Southern California and his Bachelors degree (all
in Electrical Engineering) from the Indian Institute of Technology Bombay.

Shiliang Pu received the Ph.D. degree in applied
optics from the University of Rouen, Mont-Saint-
Aignan, France, in 2005. He is currently the Exec-
utive Vice Director of the Research Institute with
Hikvision, Hangzhou, China. He is also responsible
for the company’s technology research and devel-
opment work on video intelligent analysis, image
processing, coding, and decoding. His current re-
search interests include image processing and pattern
recognition.

Thomas La Porta is the Director of the School
of Electrical Engineering and Computer Science at
Penn State University. He is an Evan Pugh Professor
and the William E. Leonhard Chair Professor in the
Computer Science and Engineering Department. He
received his B.S.E.E. and M.S.E.E. degrees from
The Cooper Union, New York, NY, and his Ph.D.
degree in Electrical Engineering from Columbia
University, New York, NY. He joined Penn State in
2002. He was the founding Director of the Institute
of Networking and Security Research at Penn State.

Prior to joining Penn State, Dr. La Porta was with Bell Laboratories where
was the Director of the Mobile Networking Research Department. He is an
IEEE Fellow and Bell Labs Fellow. He also won two Thomas Alva Edison
Patent Awards. Dr. La Porta was the founding Editor-in-Chief of the IEEE
Transactions on Mobile Computing. He has published numerous papers and
holds 39 patents.

http://caffe.berkeleyvision.org/
https://www.nrl.navy.mil/itd/ncs/products/core
https://www.nrl.navy.mil/itd/ncs/products/emane
https://sys.cs.uos.de/bonnmotion/

	Introduction
	Related Work
	Overview
	The Big Picture
	The Processing Scheduling Problem
	Completion Time
	Communication Delay
	Mathematical Formulation

	Greedy Algorithm
	The Algorithm
	Performance Analysis
	Discussion

	Adaptive Algorithm
	The Algorithm
	Discussion

	NetVision
	Performance Evaluation
	Algorithm Performance
	Processing Delay
	Greedy Algorithm vs Optimum
	Greedy Algorithm vs Baseline
	Adaptive Algorithm vs Greedy Algorithm

	System Performance
	Stationary Network
	Mobile Network

	Discussion
	Conclusion
	References
	Biographies
	Zongqing Lu
	Kevin Chan
	Rahul Urgaonkar
	Shiliang Pu
	Thomas La Porta

