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Abstract—The emerging of mobile social networks opens opportunities for viral marketing. However, before fully utilizing mobile social

networks as a platform for viral marketing, many challenges have to be addressed. In this paper, we address the problem of identifying

a small number of individuals through whom the information can be diffused to the network as soon as possible, referred to as the

diffusion minimization problem. Diffusion minimization under the probabilistic diffusion model can be formulated as an asymmetric

k-center problem which is NP-hard, and the best known approximation algorithm for the asymmetric k-center problem has

approximation ratio of log �n and time complexity Oðn5Þ. Clearly, the performance and the time complexity of the approximation

algorithm are not satisfiable in large-scale mobile social networks. To deal with this problem, we propose a community based algorithm

and a distributed set-cover algorithm. The performance of the proposed algorithms is evaluated by extensive experiments on both

synthetic networks and a real trace. The results show that the community based algorithm has the best performance in both synthetic

networks and the real trace compared to existing algorithms, and the distributed set-cover algorithm outperforms the approximation

algorithm in the real trace in terms of diffusion time.

Index Terms—Information diffusion, mobile social networks, community structure
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1 INTRODUCTION

SOCIAL network plays an important role for spreading
information, idea and influence among its members.

Nowadays, social networks have been evolving to online
social networks such as Facebook, Twitter, and Google+
that link humans, computers and the Internet, and informa-
tion spreading in social networks has been changed from
the way of “word-of-mouth” [1] to “word-of-text”, “word-
of-voice”, “word-of-photo” and “word-of-video”. In addi-
tion, with the proliferation of smart mobile devices, such as
smartphone and tablet, people can easily go online with
their mobile devices, meanwhile more and more native
mobile social networks have been created like Foursquare,
Instagram, and Path. Moreover, Bluetooth and Wi-Fi Direct
extend communications between mobile devices from the
restrictions of cellular infrastructure; user mobility and
social connectivity bring numerous ad-hoc communication
opportunities.

The emerging of mobile social networks opens opportuni-
ties for viral marketing [2]. Different from traditional tele-
vised or roadside-billboard advertising campaign, viral
marketing takes advantage of the power of “word-of-
mouth” to increase brand awareness or product sale through

self-replicating viral processes, and it has attracted consider-
able attentions from mobile and social computing research
society [3], [4]. However, before fully utilizing mobile social
network as a platform for viral marketing, many challenges
have to be addressed.

As the essence of viral marketing applications is infor-
mation diffusion from a small number of individuals to
the entire network by “word-of-mouth”, in this paper, we
address the problem of identifying a small number of
individuals through whom the information can be dif-
fused to the entire network as soon as possible, referred
to as the diffusion minimization problem. Diffusion minimi-
zation is naturally critical to viral marketing applications.
For example, the “word-of-mouth” advertisement [4]
should be disseminated to the network as soon as possi-
ble, and thus it would be of interest to many companies
as well as individuals that want to increase brand
awareness, or disseminate advertisements or innovative
ideas through “word-of-mouth”. For example, a company
would like to quickly raise the awareness of a new prod-
uct in a network. The company initially gives free sam-
ples of the product to a small number of individuals in
the network (the product is expensive or the company
has limited budge such that they can only choose a small
number of people). The company hopes that the initially
selected users will spread the information of the new
product to their friends, and their friends will propagate
the information to their friends’ friends and so on.

Diffusion minimization under the probabilistic diffu-
sion model can be formulated as an asymmetric k-center
problem which is NP-hard, and the best known approxi-
mation algorithm for the asymmetric k-center problem
has approximation ratio of log �n and time complexity

Oðn5Þ [5], where n is the number of nodes and log �n is
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the iterated logarithm of n. Obviously, the performance
and the time complexity of the approximation algorithm
are not satisfiable in large-scale social networks. To deal
with this problem, we design a community based algo-
rithm with better performance and less time complexity.
Different from existing approximation algorithms, the
community based algorithm, from the social point of
view, leverages the community structure to solve the
diffusion minimization problem, considering the proper-
ties of communities that information can be quickly
spread within a community and information diffusion
from one community to another is much slower. Due to
lack of global information and the requirement to handle
the dynamic evolving of targeted networks, we further
propose a distributed set-cover algorithm, where each
node collects social contact information by probing mes-
sages (e.g., using Wi-Fi/Bluetooth) in a distributed way.
The performance of these algorithms is evaluated based
on both synthetic networks generated by a well-known
benchmark and a real trace. Simulation results show that
the community based algorithm has the best performance
in both synthetic networks and real trace, and the
distributed set-cover algorithm outperforms the approxi-
mation algorithm in the real trace in terms of diffusion
time. The major contributions of this paper are summa-
rized as follows.

� We propose the probabilistic information diffusion
model and formulate the diffusion minimization
problem in mobile social networks.

� We design a community based algorithm, which
considers both non-overlapping and overlapping
community structure, to solve the diffusion minimi-
zation problem.

� We further propose a distributed set-cover algo-
rithm, which includes two phases: discovering the
diffusion set and identifying the k-node set, to solve
the problem.

The rest of this paper is organized as follows. Section 2
reviews related work. Section 3 gives the problem state-
ment. The community based algorithm is presented in Sec-
tion 4, followed by the distributed set-cover algorithm in
Section 5. Section 6 evaluates the performance of the pro-
posed algorithms and Section 7 concludes the paper.

2 RELATED WORK

2.1 Information Diffusion

With the emerging of online social media, information
diffusion has been extensively studied based on emails
[6], blogs [7], Flickr [8], Facebook [9], and Twitter
[10]. One salient feature of information diffusion is the
correlation between the number of friends engaging in
spreading information and the probability of adopting
the information [9].

Recently, a lot of research efforts focus on whether and
how individuals influence each other. Domingos and
Richardson [11] were the first to study the influence maxi-
mization problem and gave a probabilistic solution. Kempe
et al. [12] formally formulated the problem of identifying
k-node set to maximize the influence as an optimization

problem. They investigated the influence maximization
under two diffusion models: independent cascade model
and linear threshold model and designed a greedy algo-
rithm with approximation ratio of ð1� 1

eÞ. After Kempe
et al. established the influence maximization problem, it has
attracted a lot of attentions. Leskovec et al. [13] proposed an
optimized greedy algorithm, Chen et al. [14] proposed two
faster greedy algorithms, and Jiang et al. [15] proposed a
simulated annealing algorithm. Time-constrained influence
maximization problem were investigated in [16], [17], both
of which proposed a greedy algorithm to achieve the

approximation ratio ð1� 1
eÞ, and positive influence maximi-

zation was investigated in [18].
Different from the influence maximization problem

which studies how individuals influence each other and
how to maximize the influence in social networks, the diffu-
sion minimization problem investigates how information
spreads and how to minimize the diffusion time.

2.2 Mobile Social Networks

Through mobile social networks, individuals with similar
interests interact, communicate and connect with others by
their mobile devices such as smartphones, tablets, etc. With
the proliferation of smartphones, mobile social network has
emerged as a new frontier in mobile computing research,
and lots of research has focused on mobile social networks
[19], [20], [21]. Moreover, many mobile social applications
have been developed such as CenceMe [22], Micro-blog
[23], SociableSense [24], METIS [25], etc.

Mobile social network is a fertile ground for the rapid
spreading of information including text, photo, voice and
video. Thus, information dissemination is an important
problem in mobile social networks. McNamara et al. [26]
investigated the content sharing among co-located mobile
users in urban transportation and proposed a user-centric
prediction scheme that collected the historical co-location
information to determine the best content sources. Han et al.
[19] designed a distributed randomwalk protocol for immu-
nization of infectious diseases and information dissemina-
tion. Hu et al. [27] proposed an energy-aware user-contact
detection algorithm through Bluetooth and accelerometer
on smartphones. Peng et al. [4] addressed users’ selfishness
and privacy concerns for viral marketing. Ning et al. [3] pro-
posed an incentive scheme to stimulate the collaboration
among selfish nodes for data dissemination. Lu et al. [28]
proposed skeleton as the network structure of mobile social
network based on best friendships and exploited it for data
dissemination and worm containment. However, none of
them considers the diffusion minimization problem.

This paper substantially extends the preliminary version
of our result appeared in [29]. In [29], we mainly focused on
how to efficiently solve the diffusion minimization based on
non-overlapping community structure. In this paper, we
design a more general algorithm which considers both non-
overlapping and overlapping community structure and we
perform additional extensive simulations in synthetic net-
works with overlapping community structure. Moreover,
we redesign the distributed set-cover algorithm to avoid the
deviousness of traveling paths of probingmessages and thus
enrich the up-to-date information collected by each node.
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3 PRELIMINARIES, PROBLEM STATEMENT

AND NA€IVE ALGORITHM

3.1 Mobile Social Network

Let G ¼ ðV;EÞ represent a weighted and undirected mobile
social network, where V denotes the set of nodes with cardi-
nality n and E denotes the set of edges. For two neighboring
nodes u; v 2 V , wuv denotes the weight of the edge and
wuv ¼ wvu. The edge weight indicates the frequency of con-
tacts between two nodes. For a node u 2 V , du is the degree
of node u and Nu is the neighbor set of u, and we have
du ¼ P

v2Nu
wuv.

3.2 Probabilistic Diffusion Model

In the operational model of information diffusion, each
node can be either active or inactive. Active nodes are the
adopters of the information and are ready to diffuse the
information to their inactive neighbors. The state of a node
can be switched from inactive to active, but not the other
way around. More specifically, when an active node u
contacts an inactive node v, v becomes active with some
probability �uv ¼ wuv

du
. This is because the probability of

information spreading from node u to the neighboring node
v should be proportional to the connection fraction of node
v over the degree of u. In other words, the more frequently
node u contacts with node v, the more likely node v gets
informed and becomes active. From the social relation point
of view, a person most likely shares the information with
his best friends rather than others.

The evolutionary game theory based diffusion model is
explored, in [30], [31], to consider the influence of users
decisions, actions and socio-economic connections on infor-
mation diffusion. However, this diffusion model requires
users’ payoff matrix on whether to forward the diffused
information. Since such payoff information is not always
available in mobile social networks, this diffusion model
cannot be adopted in this work.

Different from the linear threshold model [12] and the
independent cascade model [32] that describe how individu-
als influence each other in social networks, the probabilis-
tic diffusion model describes how the information diffuses
in social networks.

3.3 Problem Statement

The information diffusion process can be described as fol-
lows. First an initial set of active nodes is selected. When the
contact happens between an active node and an inactive
node, the inactive node becomes active with a probability.
The process terminates when all the nodes are active.

Let S be the initial set of active nodes. The diffusion time
of initially selected node set is defined as the time interval
between the start and the end of the information diffusion
process denoted by tðS; V Þ.

Given a weighted network G ¼ ðV;EÞ and an integer k,
we aim to identify a node set S, jSj � k and S � V , such
that tðS; V Þ is minimum. This problem is referred to as the
diffusion minimization problem and nodes in S are referred
to as the diffusion nodes.

Under the probabilistic diffusion model, using the edge
weight wuv as the contact frequency in social network, the

expected information diffusion time from node u (active) to
neighboring node v (inactive) can be formulated as

tuv ¼ 1

�uv
� 1

wuv
¼ du

wuv
� 1

wuv
¼ du

w2
uv

; (1)

where �uv ¼ wuv
du

and 1
wuv

denotes the average time interval

between contacts. Similarly, we have tvu ¼ dv
w2
uv
from node v to

node u (the expected diffusion time from u to v and that from
v to u are different, except du ¼ dv). For any pair of nodes, for
example node u and v, the shortest expected diffusion time
from u to v is denoted as jðu; vÞj and for simplicity we also
call jðu; vÞj the expected diffusion time from u to v.

Since the diffusion time between any pair of nodes can be
estimated by the expected diffusion time, the diffusion min-
imization problem under the probabilistic diffusion model
can be mathematically formulated as finding a subset S � V
with jSj � k to minimize the expected diffusion time
t0ðS; V Þ:

t0ðS; V Þ ¼ minmax
v2V

jðS; vÞj; (2)

where

jðS; vÞj ¼ min
u2S

jðu; vÞj (3)

and jðS; vÞj is the expected diffusion time from set S to node v.
As 9u; v 2 V; tuv 6¼ tvu, the problem is the same as the

asymmetric k-center problem, which is NP-hard. There is
an approximation algorithm known for the asymmetric
k-center problem with approximation ratio log �n [5] and
asymmetric k-center is log �n-hard to approximate [33].
Moreover, the time complexity of the approximation

algorithm is Oðn5Þ. Therefore, the performance and the
time complexity of the approximation algorithm are not
satisfiable in large-scale social networks. Thus, we design
better algorithms.

3.4 A Na€ıve Algorithm

The closeness (also known as closeness centrality) of a node
is defined as the reciprocal of the sum of the shortest distan-
ces to all other nodes in the network. When applied to the
probabilistic diffusion model, the closeness of node u can be
denoted as 1=

P
v2V jðu; vÞj.

Closeness is a measure of how fast it will take to spread
information from a node to all other nodes [34]. With regard
to identifying S from V , a na€ıve solution for the diffusion
minimization problem can be based on closeness; i.e., itera-
tively select the node with the highest closeness from the set
of unselected nodes (i.e., V nS) until jSj ¼ k. More specifi-
cally, the closeness of node u at each iteration is calculated as

1P
v2V nS jðu; vÞj

; u =2 S:

However, the na€ıve algorithm does not work well (as shown
in the evaluation section), and hence we propose better
algorithms.

4 COMMUNITY BASED ALGORITHM

Considering the design of information diffusion in mobile
social networks, intuitively, the concept of social relations
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should be exploited. In this section, we design the commu-
nity based heuristic algorithm.

Community represents a set of nodes in a network,
where nodes inside the community have more internal con-
nections than external connections [35], [36], [37]. Commu-
nity structure is a prominent network property which
provides a clear view of how nodes are organized and how
nodes contact with each other, especially in social networks.

For information diffusion in mobile social networks,
communities have the following properties:

� Within a community, nodes frequently contact each
other and hence information can be quickly spread.

� Information diffusion from one community to
another community is much slower compared to
that within community.

The basic idea of the community based algorithm is to
identify at least one diffusion node from each community.
Let C ¼ fC1; C2; C3; :::Clg denote the community structure,
where jCj ¼ l and Ci 2 C denotes a community and Ci � V .
For simplicity, we also denote Ci as C if there is no confu-
sion. In addition, for two communities, for example Ci and
Cj, they may overlap with each other, i.e., Ci \ Cj 6¼ ;.

As k nodes need to be identified from C, there are two
cases: k < l and k � l. For k < l, we cannot guarantee one
diffusion node for each community, so some communities
should be merged. For k � l, we need to consider how to
identify more than one diffusion node in a community.
Thus, in following we first show how to merge the detected
communities to ensure k � l, and then study how to identify
multiple diffusion nodes in a community, after that give the
design of the community based algorithm.

4.1 Community Merge

Before getting into the details of merging communities, we
first introduce two terms: central node and diffusion radius.

Definition 1. The Central Node of a community is defined as the
node from which the expected diffusion time to all other nodes
in the community is minimum. The expected diffusion time of
the central node is defined as the Diffusion Radius of the
community.

Let NC and RðCÞ denote the central node and the diffusion
radius of community C, respectively, and we have

RðCÞ ¼ min
u2C

max
v2C

jðu; vÞj
� �

:

By merging communities, the number of communities
can be reduced from l to k. After that, the expected diffusion
time of the network is determined by the community with
the maximum diffusion radius since we will identify one
diffusion node in each community. Thus, for community
merge, we should minimize maxfRðCÞ : C 2 Cg after ðl� kÞ
merging steps. Clearly, we have RðCi [ CjÞ > maxfRðCiÞ;
RðCjÞg. Thus, the merge of communities will increase the
diffusion radius. Since, at each step, we merge two commu-

nities together, we have
� jCj
2

�
choices to merge communi-

ties. In order to minimize maxfRðCÞ : C 2 Cg after ðl� kÞ

merging steps, we have to search
� l
2

�� l� 1
2

� � � � � kþ 1
2

�
times. However, the running time is Oðll�kÞ and it is too
expensive for large community structure. Thus, we propose
an alternative approach for community merge.

For two rarely or indirectly connected communities,
the merged community will have an unexpected large dif-
fusion radius. In contrast, for two closely connected com-
munities, the diffusion radius of the merged community
may be more than the maximum of the two individual
communities. Thus, the basic idea is to merge closely con-
nected communities and make the diffusion radius of
newly formed community as small as possible. Cj is a
closely connected community to Ci if the sum of the edge
weights between Ci and Cj normalized by jCjj is no less
than that between Ci and V nCi. Moreover, since Ci and
Cj may be overlapped, the set of overlapped nodes
Ci \ Cj should be excluded from Cj when considering the
sum of edge weights between Ci and Cj. Note that over-
lapped communities tend to be closely connected commu-
nities. The set of closely connected communities of Ci

(Ci 2 C) is denoted by CCi
and represented as

CCi
¼ Cj 2 CnfCig :

X
u2Ci;v2CjnCi

wuv

jCjnCij �

X
u2Ci;v2V nCi

wuv

jV nCij

8>><
>>:

9>>=
>>;
:

The community merging process works as follows. First,
we choose the community with the lowest diffusion radius
denoted by Ci among C, then merge Ci with Cj, one from the
set of closely connected communities CCi

, to obtain the low-

est RðCi [ CjÞ. If the diffusion radius of the newly formed
community is less than the maximum value in C, we merge
them together. Otherwise, all other communities are iterated
to find RðCi [ CjÞ � maxfRðCÞ : C 2 Cg. If we cannot find
RðCi [ CjÞ � maxfRðCÞ : C 2 Cg, Ci and Cj are merged with
the lowestRðCi [ CjÞ in C. Then, C is updated and the process
is iterated until l� k merging steps. Note that after l� k
merge steps, the communities may still overlap.

With l� k merging steps, there are at most jCj � 1
searches for the merging with the lowest diffusion radius at
each iteration, and one community has at most jCj � 1
closely connected communities. Thus, the worst time com-

plexity of merging community is Oðl2ðl� kÞÞ.

4.2 Identifying Diffusion Nodes within Community

After community merge, jCj ¼ k. Thus, the design effort
focuses on k � jCj. In the rest of this section, C is either the
communities after merging or the detected communities
with k � l. Since k � l, we need to identify more than one
diffusion nodes in a community.

As the expected diffusion time for a node u 2 Ci to be
informed is jðSCi

; uÞj, where SCi
denotes the set of diffusion

nodes selected within community Ci, to identify multiple
diffusion nodes, we iteratively choose the node, which mini-
mizes the sum of the expected diffusion time from the set of
selected diffusion nodes to every other node in community
Ci, precisely,

argmin
u2CinSCi

X
v2CinSCi

jðSCi
[ fug; vÞj:
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With the selection of SCi
, the expected diffusion time of

community Ci is denoted as t0ðSCi
; CiÞ.

4.3 Algorithm Design

To select diffusion nodes which can effectively reduce the
expected diffusion time, a straightforward solution is to
select the central node from each community, and then
iteratively choose nodes from the community with
maxfRðCÞ : C 2 Cg until jSj ¼ k. However, this approach is
not efficient. Let us give an example. In C, there is a commu-
nity Ci with diffusion radius larger than that of the merged
community of Cj and Ck. For this case, it is better to select
more than one diffusion node from Ci and only choose one
diffusion node from the merged community of Cj and Ck.
Therefore, the designed algorithm should address this prob-
lem. Furthermore, since there are two types of community
structure: non-overlapping and overlapping (i.e.,
9Ci; Cj : Ci \ Cj 6¼ ;), the designed algorithm should con-
sider both of them. The community based algorithm works
as follows.

First we use similar technique as in Section 4.1 to merge
closely connected communities until 8Ci; Cj : RðCi [ CjÞ >
maxfRðCÞ : C 2 Cg, and thus we have the updated C. We
call it the merging process.

Then, for non-overlapping community structure, we can
easily choose the central nodes for individual communities
as the candidates of diffusion nodes and thus we still have
k� jCj candidates remaining. However, for overlapping
community structure, the selection of central nodes is more
complex. Since 9Ci; Cj : Ci \ Cj 6¼ ;, the overlapped nodes
between Ci and Cj are already covered by NCi

if NCi
is

selected before NCj
. Thus, the selection of central nodes in

Cj should not consider the set of overlapped nodes. The
selected central node should beNCjnCi

rather thanNCj
, since

RðCjÞ � RðCjnCiÞ. Therefore, a proper order of selecting
central nodes for overlapping community structure is
needed to obtain a better expected diffusion time. More-
over, the overlapped nodes covered by the previously
selected central nodes should not be considered by subse-
quent selection of central nodes. To minimize the expected
diffusion time, the selection of central nodes of overlapping
communities works as follows. First, we select the commu-
nity with minimum diffusion radius from C, denoted as C1,
and choose NC1

as a candidate. Then, we choose the com-

munity that minimizes RðCinC1Þ; Ci 2 CnfC1g, denoted as
C2, and NC2nC1

will be selected. Repeatedly, for ith selection

we have NCinC1n...nCi�1
. We denote CinC1n . . . nCi�1 as C�

i ,

which represents the node set Ci excluding the nodes cov-
ered by i� 1 already selected central nodes.

Next, we identify other candidate within community Ci

with the maximum expected diffusion time in the current C.
If Ci is an originally detected community, we first choose
a candidate, according to the approach described in
Section 4.2, to replace NCi

(NC�
i
for overlapping community

structure), then identify one more candidate and add it into
S. If Ci is a merged community, it is split into two original
communities Cj and Ck, and then we have the updated C.
For non-overlapping community structure, the central
nodes of Cj and Ck are chosen as two candidates to replace
NCi

. Recall that we have RðCiÞ > maxfRðCjÞ; RðCkÞg, so
this replacement will decrease the expected diffusion time
of the network. For overlapping community structure,
directly choosing NC�

j
and NC�

k
might not be a good choice

to obtain the minimum expected diffusion time due to the
change of the selection order of central nodes. That is, for
example as shown in Fig. 1, C ¼ fC1; C2; C3g, where
RðC1Þ ¼ 10, RðC2Þ ¼ 12, RðC3Þ ¼ 14 and RðC3nC2Þ ¼ 13.
Since C3 is a combined community of C4 and C5, in order to
identify one more candidate, we split it into C4 and C5,
where RðC4nC2Þ ¼ 7 and RðC5nC2Þ ¼ 8. So, if we keep cur-
rent selection order, i.e., NC1

, NC2
, NC4nC2

and NC5nC2
, the

expected diffusion time of the network will be RðC2Þ ¼ 12.
However, if we re-select all the candidates based on the
updated C, we will have RðC4Þ, RðC5Þ, RðC1Þ, RðC2nC4nC5Þ.
A better expected diffusion time is obtained as
RðC2nC4nC5Þ, since RðC2nC4nC5Þ � RðC2Þ. Thus, we should
re-select all the candidates for the updated C if the split of a
community happens for overlapping community structure.

The aforementioned process is executed iteratively for
both non-overlapping and overlapping community structure
until no candidate remains andwe call it restoring process.

Fig. 2 gives an example of the community based algo-
rithm for non-overlapping community structure, where
l ¼ 7 and k ¼ 7. Fig. 2a shows the detected communities.
Figs. 2a to 2c show the merging process. Figs. 2c to 2f show
the restoring process. After the merging process, three com-

munities remain: C
00
1 , C

00
2 and C4 as in Fig. 2c. After choosing

the central node from each of these communities, as

RðC 00
1 Þ ¼ 20, RðC 00

2 Þ ¼ 24 and RðC4Þ ¼ 35, we need to iden-
tify another diffusion node from C4. After selecting two dif-
fusion nodes from C4, t

0ðSC4
; C4Þ ¼ 19 as shown in Fig. 2d.

Since RðC 00
2 Þ > t0ðSC4

; C4Þ, we then switch to C
00
2 . As C

00
2 is a

merged community, we split C
00
2 into C5 and C

0
2, and replace

N
C

00
2
with NC5

and N
C

0
2
as shown in Fig. 2e. The restoring

process continues until jSj ¼ k. Finally, we choose N
C

0
1
, N

C
0
2
,

NC3
, NC5

and SC4
(jSC4

j ¼ 3) as diffusion nodes, and the

expected diffusion time of the network is the maximum of

Fig. 1. Illustration of the selection of central nodes for overlapping community structure.
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individual communities; that is, t0ðSC4
; C4Þ ¼ 15 as shown

in Fig. 2f. If we choose the central node for each community,
and then identify the rest of diffusion nodes from the com-
munity with the maximum diffusion radius, for this exam-
ple, S will include NC1

; NC2
; NC3

; NC4
; NC5

; NC6
and NC7

,

and the expected diffusion time of the network is also deter-
mined by C4, i.e., RðC4Þ ¼ 35. Thus, our algorithm performs
better than the straightforward solution; i.e., the expected
diffusion time of our algorithm is 15 which is much better
than 35. More generally, our algorithm identifies more dif-
fusion nodes in the community which determines the
expected diffusion time of the network than the straightfor-
ward solution, and t0ðSCi

; CiÞ decreases with the increase of

jSCi
j according to the approach in Section 4.2; thus, our algo-

rithm has better performance.
Regarding the time complexity, for community merge,

the worst case is when all the communities are merged
into one community and the running time is Oðl3Þ. For the
selection of S, the worst case is when all the diffusion
nodes are selected by the approach in Section 4.2 and the

running time is Oðkn2Þ. Thus, the worst time complexity

of the community based algorithm is Oðl3 þ kn2Þ.
However, since l is much less than n, the running time is

equivalent to Oðkn2Þ, which is much less than the approxi-

mation algorithm (Oðn5Þ).

4.4 Performance Analysis

Since the community based algorithm relies heavily on the
community structure, which is a natural property of net-
works, it is hard to give a mathematically rigorous perfor-
mance analysis. In the following, we provide insights into
the performance of the algorithm based on the diffusion
node selection process.

As mobile social networks usually consist of a large num-
ber of communities and k is usually small, we consider the
case that there is only one diffusion node identified from a
community. As described in Section 4.3, after the merging
process, the number of communities is no more than k (i.e.,
k � jCj), and the merging of any two communities will pro-
duce a communitywith larger diffusion radius than themax-
imum one in C (i.e., 8Ci; Cj : RðCi [ CjÞ > maxfRðCÞ :
C 2 Cg). Thus, according to the criteria of community merge,
the communities have similar diffusion radius when the
merging process stops. Suppose that S� is the diffusion node
set of the optimal solution and t0� is the optimal expected dif-
fusion time. For a node u 2 S�, let Vu ¼ fv 2 V : jðu; vÞj �
t0�g. If the node set Vu is treated as a community, the commu-
nities fVu : u 2 S�g are generally prone to have similar or
even same diffusion radius. Based on these facts, we assume
that the community based algorithm performs equally with
the optimal solution at this phase, although there is a slight
deviation between them. In the following, we present the
performance analysis based on this assumption.

We use an example to illustrate the comparison between
the optimal solution and the community based algorithm.
Assume that a large number of nodes form as a straight line
(the length is L) and the distance (the expected diffusion
time) between neighboring nodes is identical. When k ¼ 1,
both of these two approaches will choose the node in the
middle as the diffusion node. When k ¼ 2, the optimal solu-

tion will choose the nodes at L
4 and 3L

4 , and the optimal

expected diffusion time t0� is L
4; the community based algo-

rithm will divide the nodes into two communities and find
one diffusion node from each community, and thus they

still perform equally, i.e., t0 ¼ L
4. When k ¼ 3, the optimal

solution will select the nodes at L
6 ;

L
2 and 5L

6 , and t0� ¼ L
6; the

Fig. 2. Illustration of the community based algorithm for non-overlapping community structure, where l ¼ 7 and k ¼ 7. (a) to (c) show the merging
process. (c) to (f) show the restoring process (identifying diffusion nodes). Finally, S ¼ fNC3

; NC5
; N

C
0
1
; N

C
0
2
g [ SC4

.
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community based algorithm will divide one of two commu-
nities into two, but the expected diffusion time of the net-
work is still determined by the remaining community, i.e.,

t0 ¼ L
4 and t0=t0� ¼ 3

2. By deduction, we have the best case of

performance that t0=t0� ¼ 1, when k ¼ 2n; n ¼ 0; 1; 2; . . ., and

the worst case of performance that t0=t0� ¼ 2n�1
2n�1 	 2, when

k ¼ 2n � 1; n ¼ 2; 3; 4; . . ..
Although such comparison is derived from the

assumption that can be hardly approved for each case
since community structure varies in different networks,
the assumption is generally valid and thus the analysis
gives insights into the performance of the community
based algorithm, i.e., the expected diffusion time of the
community based algorithm is at most two times of the
optimal solution.

5 DISTRIBUTED SET-COVER ALGORITHM

The approximation algorithm and the community based
algorithm are centralized and require global information of
the network; i.e., pairwise expected diffusion time is
required for the approximation algorithm and community
structure is required for the community based algorithm.
However, such information might not be available or cost
too much in some scenarios, such as mobile social networks
constructed from opportunistic node contacts. Furthermore,
networks might dynamically evolve over time and then the
contact frequency between nodes (the edge weight) varies
over time, which will affect the accuracy for calculating the
pairwise expected diffusion time and detecting the commu-
nities. Thus, in this section, we propose a distributed set-
cover algorithm to address these problems, where each node
collects up-to-date information and the collected information
is exploited to solve the diffusionminimization problem.

For a certain time period g and a node u, there is a set of
nodes to which u can diffuse information within g, referred
to as the diffusion set of u. Suppose g is equal to the mini-
mum diffusion time of the set of diffusion nodes, precisely,

g ¼ min
S�V
jSj�k

max
v2V

jðS; vÞj;

the set of diffusion nodes S can be easily identified by
selecting the nodes, where the union of the diffusion sets for
the selected nodes is the set of network nodes V . Although
it is impossible to have the minimized diffusion time before-
hand, this inspires the design of the distributed set-cover
algorithm.

The distributed set-cover algorithm includes two phases:
discovering the diffusion set and identifying the k-node set. For a
given g, which is a system parameter, the first phase lever-
ages probing messages to find the diffusion set for each
node in a distributed way; the second phase iteratively
selects the node to maximize the union of the diffusion sets
for the selected nodes.

5.1 Discovering the Diffusion Set

The diffusion set is identified as follows. For every period of
time Dt, which is a system parameter, each node generates a
probing message which includes the set of traversed nodes
and time-to-live (TTL), where the set of traversed nodes

initially includes the node id of the message generator and
TTL is set to g, and stores it in the local message queue.
When a node u contacts with node v, u will randomly
choose one probing message whose set of traversed nodes
dose not include v from its message queue and forward the
message with probability �uv (�uv ¼ wuv

du
). If node v receives

the probing message from u, it will deduct TTL by tvu. After
that, if TTL � 0, v will merge the set of traversed nodes in
the probing message into GðvÞ, where GðvÞ denotes the set of
nodes which have been traversed by the probing messages
received at node v. Finally, if TTL � 0, the probing message
is discarded, otherwise, node v is added into the set of tra-
versed nodes and the message is stored into v’s local mes-
sage queue so that it can be forwarded to other nodes. Since
TTL of probing messages is initially set to g and reduced by
the expected diffusion time from receiver to sender at each
message transfer, for each node u, u can diffuse information
to GðuÞ within g and GðuÞ is called the up-to-date diffusion set
of node u. Note that, during this discovering process, wuv

and du are needed for node u to compute �uv, and wuv and
dv are needed for node v to calculate tvu. However, it is easy
for individual nodes to maintain these information, thus it
is omitted here. The formal description of the discovering of
diffusion sets is shown in Protocol 1.

Protocol 1. Discovering the diffusion set

Inputs: Dt and g
Event: Every Dt.
Object: All nodes:
I. Generate a probing message including TTL and a set of
traversed nodes, where TTL is set to g and the set of tra-
versed nodes is initialized to include the message
generator.

II. Add the message into local message queue.
Event:When two nodes contact with each other.
Object: Each of them
Outgoing:
I. Randomly select a probing message, whose set of tra-

versed nodes does not include the receiver, and send it
out with the probability of information diffusion from
sender to receiver.

Incoming:
I. When received a probing message, deduct the expected
diffusion time from receiver to sender from TTL of the
message.

II. If TTL � 0, add the set of traversed nodes into the up-to-
date diffusion set.

III. If TTL > 0, include itself into the set of traversed nodes
and store the message into its message queue, other-
wise, discard the message.

5.2 Identifying the k-Node Set

We identify the k-node set based on the collected up-to-date
diffusion set for each node. The k-node set is selected as

follows. First, we mark V
0
as a copy of V , and then choose

node u from V , which can maximize the intersection of GðuÞ
and V

0
, i.e., u ¼ argmaxfjGðvÞ \ V

0 j : v 2 V g. After that, u

and nodes in the intersection of GðuÞ and V
0
are excluded

from V
0
. The process is executed iteratively until jSj ¼ k or

V
0 ¼ ;. The algorithm of identifying the k-node set is
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detailed in Algorithm 1 and the worst case of time complex-

ity is Oðkn2Þ.

Algorithm 1. Identifying the k-node Set

Input: V , k
Output: S

1 V
0 ¼ V

2 while jSj < k && V
0 6¼ ; do

3 u ¼ argmax
v2V

jV 0 \ GðvÞj
4 V

0 ¼ V
0 nGðvÞnfug

5 S ¼ S [ fug
6 end

5.3 Discussions

When node v (receiver) receives a probing message from
node u (sender), node vwill reduce TTL of the probing mes-
sage by the expected diffusion time from v to u. Why not
reduce TTL by the diffusion time of the probing message from u
(sender) to v (receiver)? This is because the diffusion time
from sender to receiver is different from that from receiver
to sender. As we aim to collect the up-to-date diffusion set
at the receiver side, reducing TTL by the diffusion time
from sender to receiver is not feasible. Then, one may argue
that if the probing message is forwarded from node u to v
with probability �vu, the diffusion time of the probing mes-
sage from u to v will be equivalent to that from v to u. How-
ever, for this case, node u will need dv to calculate �vu,
which will incur additional message overhead. More impor-
tantly, v cannot rely on the diffusion time of the probing
message to determine whether u can be reached within g.
For example, if the diffusion time of the probing message
from u to v is less than g, meanwhile the expected diffusion
time from v to u is more than g, u should not be included in
the up-to-date diffusion set of v since in most cases v cannot
diffuse information to uwithin g (i.e., tvu > g).

The size of the probing message increases at each trans-
mission, since one more node id is added into the set of tra-
versed nodes each time. However, this only incurs very
little additional transmission overhead, because the travel-
ing region of probing messages is restricted by g and thus
the number of nodes that can be traversed by probing mes-
sages is limited. The set of traversed nodes of probing mes-
sages is designed to avoid the deviousness of traveling
paths of probing messages (i.e., a probing message only can
visit each traversed node once) and to potentially increase
the traversed nodes within g.

After discovering the diffusion set, each node can collect
the up-to-date diffusion set. As the path along which a prob-
ing message travels is probably not the shortest path
between two nodes in terms of expected diffusion time, is
the up-to-date diffusion set the same as the diffusion set for each
node? Although probing messages are likely to stay within
or gather at certain region according to the probability of
information diffusion between neighboring nodes, the dif-
fusion set of a node is expectedly fully discovered within
time g. However, that requires generating and forwarding
the probing message more frequently and hence results in
high message overhead. Thus, in our solution, each node
generates a message every Dt and forwards only one

message opportunistically upon node contact with a proba-
bility. Although the diffusion set may not be disclosed
completely, the up-to-date diffusion set approaches to the
diffusion set over time.

There are two system parameters for the distributed set-
cover algorithm: the time period (g) and the frequency of
generating probing message (Dt). g determines the region
that the probing message can spread and hence affects both
performance and cost. Dt determines the number of probing
messages spreading over the network and also affects per-
formance and cost. Generally speaking, less generated mes-
sages will result in smaller up-to-date diffusion set and
more generated messages will have more chances to block
the relayed probing message (since at most one probing
message is forwarded upon node contact), leading to
smaller up-to-date diffusion set as well. Thus, there is a
tradeoff for selecting the values of g and Dt, which will
result in tradeoffs between improving the performance and
reducing the message overhead. In the next section, we will
show how g and Dt affect the performance of the distributed
set-cover algorithm and how to achieve balance between
performance and cost.

6 PERFORMANCE EVALUATIONS

In this section, we evaluate the performance of the proposed
algorithms and compare them with existing algorithms
based on synthetic networks and the Facebook trace.

6.1 Comparisons Based on Synthetic Networks

In this section, we compare the community based algorithm
(Community), the approximation algorithm (Approximation)
proposed in [5] and the na€ıve algorithm (Na€ıve), in terms of
expected diffusion time. For Community, we use the com-
munity detection algorithm proposed in [36], which can
detect both non-overlapping and overlapping community
structure. Note that Community does not limit the selection
of the detection algorithm and it is compatible with other
detection algorithms.

In order to evaluate the performance of the algorithms in
different network settings, we use the synthetic networks
generated by the well-known benchmark proposed in [38].
It provides power-law distribution of node degree and edge
weight, and various topology control, and it allows overlaps
between communities. There are several parameters to con-
trol the generated network: the number of nodes n; the aver-
age neighbors a; the maximum neighbors amax; the mixing
parameter for the weights mw; the mixing parameter for the
topology mt; the exponent for the weight distribution b; the
minus exponent for the degree sequence �1; the minus expo-
nent for the community size distribution �2; the number of
communities of overlapping nodes om; the number of over-
lapping nodes on; the overlapping fraction u (on=n). The set-
tings of these parameters are close to [39], which are shown
in Table 1. Compared to [39] that employed the same bench-
mark, same values are assigned to most parameters such as
om, mt and mw, while more variations are allowed for other
parameters than [39] to make it more general. For example,
the overlapping fraction can be changed from 0 to 0.5 in the
networks with 500, 1,000 and 2,000 nodes, respectively.
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The expected diffusion time is formulated based on the
time unit of the contact frequency. For example, if the edge
weight is formulated as contacts of one month, the time unit
of the expected diffusion time is one month.

6.1.1 Non-Overlapping Community Structure

Fig. 3 shows the expected diffusion time of Community,
Approximation and Na€ıve with varying k for different net-
work settings with non-overlapping community structure
(i.e., u ¼ 0). Since in real applications k should be a small
value, we choose k no more than 5 percent of the network
size for each setting and k varies from 1 to 5 percent of net-
work size. As shown in Fig. 3, for the networks with
mt ¼ 0:1 and mw ¼ 0:1, Community and Approximation are
comparable when k is small. However, with the increase of
k, Community increasingly outperforms Approximation. In
addition, both Community and Approximation are much bet-
ter than Na€ıve. For the networks with more heterogeneity in
edge weight, where mt ¼ 0:1 and mw ¼ 0:3, Community out-
performs the other two algorithms for all k values and Na€ıve
still has the worst performance. Community always has bet-
ter performance, up to 40 percent, than Approximation in dif-
ferent network sizes for more heterogeneous network in

topology, where mt ¼ 0:3 and mw ¼ 0:1. In addition, the
expected diffusion time of Na€ıve does not change too much
when k increases, compared to Approximation and Commu-
nity, which means that selecting more diffusion nodes does
not help too much in Na€ıve, especially in networks with
more heterogeneity in topology. Moreover, Approximation
performs worse than other two algorithms when k is small
and such performance deteriorates in the networks with
more heterogeneity in topology.

6.1.2 Overlapping Community Structure

Fig. 4 shows the performance of these algorithms on differ-
ent network settings with overlapping community struc-
ture, where we fix k to 5 percent of network sizes and vary u

for 0 to 0.5. As shown in Fig. 4, for the networks with
mt ¼ 0:1 and mw ¼ 0:1, Community is better than Approxima-
tion and Na€ıve, especially for the network with large size.
Note that due to the randomness of the benchmark and the
change of u, the optimal expected diffusion time of gener-
ated networks may also vary. As shown in the figure, the
performance of Community is relatively stable for different
network sizes with mt ¼ 0:1 and mw ¼ 0:1 when u varies.
Approximation is also stable in terms of u, but the

TABLE 1
Parameter Settings for Benchmark

Parameter Value Meaning Parameter Value Meaning

n 500, 1,000, 2,000 number of nodes mw 0.1, 0.3 mixing parameter for edge weights
mt 0.1, 0.3 mixing parameter for topology b 2 exponent for weight distribution
amax 20 maximum neighbors �1 2 minus exponent for degree sequence
a 15 average neighbors �2 1 minus exponent for community size distribution
u 0 to 0.5 overlapping fraction om 2 number of communities of overlapping nodes

Fig. 3. Expected diffusion time of Community, Approximation, and Na€ıve in different network settings with varying k and fixed u ¼ 0.
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performance significantly decreases when the network size
goes large. Meanwhile, the performance of Na€ıve appears
more random in terms of overlapping fraction u than other
two algorithms. For the networks with more heterogeneity
in edge weight (i.e., mt ¼ 0:1 and mw ¼ 0:3) Community still
outperforms other two algorithms. The performance of
Community and Approximation is more stable with varying u

and much better than Na€ıve, which still has the randomness
of performance. For the networks with more heterogeneity
in topology (i.e., mt ¼ 0:3;mw ¼ 0:1), the expected diffusion
time of all three algorithms drops when u increases from 0,
and then becomes stabilized when u further increases. As
shown in Fig. 4, although the performance of Approximation
and Na€ıve is improved when u increases, the performance of
Community is much better and more stable. The steady per-
formance of Community in all network settings in Fig. 4
proves that Communityworks well for the overlapping com-
munity structure.

The computation time of these algorithms is related to
the size of the network and k-node set and thus varies
largely in the experiments. However, it exhibits the same as
we analyzed for computational complexity in Section 4; i.e.,
Community has better computational complexity than
Approximation. For example, in the experiments, when the
network size is 1,000 and k ¼ 20, the computation time is 12,
16 and 19 s for Na€ıve, Community and Approximation, respec-
tively; when the network size is 2,000 and k ¼ 50, the

computation time is 70, 93 and 142 s for Na€ıve, Community
and Approximation, respectively.

In summary, Community performs better than Approxima-
tion and Na€ıve in terms of expected diffusion time, because
Community relies on the community structure and identifies
diffusion nodes from individual communities rather than
the entire network as in Approximation and Na€ıve. Moreover,
Community works well for both non-overlapping and over-
lapping community structure.

6.2 Estimations of g and Dt

In this section, we estimate g and Dt for the distributed
set-cover algorithm (Set-cover) based on the Facebook
trace [40], which contains friendship information and
wall posts (with timestamp) among Facebook users in the
New Orleans regional network for more than four years.
We choose a partial trace which spans from January 2007
to January 2009 and contains 2,320 nodes. The chosen
trace is summarized in Table 2, where we formulate the
contact between nodes as the wall post and the edge
weight as the contact frequency.

As the neighboring information is needed for estimating
g, Dt, and the diffusion set, we use three-month trace from
January 2007 to March 2007 to construct the neighboring
information for each node including the set of neighboring
nodes, the node degree and the edge weight for each neigh-
bor. The diffusion set discovery algorithm runs on other
three-month trace from April 2007 to June 2007 and the
neighboring information is kept updated during this period.
g and Dt are the system parameters of Set-cover, which
impact the performance and the cost.

As g determines the range that a probing messages can
spread, it corresponds to k and certain network properties.
We use the average expected diffusion time between
neighboring nodes ta, the average number of neighboring
nodes jNaj and k to estimate g. Assuming that each
selected diffusion node can spread information to the same
number of nodes (that is n

k for each diffusion node), we set

g to the expected diffusion time to spread information to n
k

nodes. That is

g ¼ ta log jNaj
n

k

l m
; (4)

where dlog jNavgj
n
ke is the minimum hop to reach n

k nodes
from the diffusion node. Figs. 5a and 5b show the message
overhead (the number of message transfers) and the
expected diffusion time of Set-cover for k ¼ 50, Dt ¼ 2 days
with varying g, where the estimated g is 50 by Eq. (4). As
can be seen, although the message overhead of g ¼ 25 is
slightly less than g ¼ 50, g ¼ 50 has better diffusion time.
Moreover, g ¼ 50 is a better choice than g ¼ 75, since the

Fig. 4. Expected diffusion time of Community, Approximation, and Na€ıve
in different network settings with varying u and fixed k.

TABLE 2
Facebook Trace Summary

Trace Facebook

No. of nodes 2,320
No. of edges 9,150
Average neighbors 7.9
No. of contacts 168,542
Duration (days) 752
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message overhead of g ¼ 50 is less than g ¼ 75, though they
have similar diffusion time. Thus, our estimation of g

achieves a good balance between performance and cost.
For Dt, we use the average node degree da and the time

unit of contact frequency T to estimate Dt. We set Dt equal
to the average time interval between contacts. That is

Dt ¼ T

da

� �
: (5)

Figs. 5c and 5d show the message overhead and the
expected diffusion time of Set-cover for k ¼ 50, g ¼ 50 with
varying Dt, where the estimated Dt is two days by Eq. (5).
Fig. 5c shows that the message overhead decreases with the
increase of Dt. Although Dt ¼ 2 days has little more message
overhead than Dt ¼ 3 days, it has much better performance
as shown in Fig. 5d. Thus, the estimation of Dt achieves a
good tradeoff between performance and cost.

6.3 Comparisons Based on the Facebook Trace

We also evaluate the performance of the proposed algo-
rithms based on the Facebook trace. Community, Approxima-
tion and Na€ıve are centralized algorithms which require the

server to continuously collect and maintain global informa-
tion. In contrast, Set-cover only needs to collect a few neigh-
boring information for estimating g and Dt, and the up-to-
date diffusion set. Although Set-cover requires probing
messages, each probing message only transfers between
neighboring nodes with a probability when contact hap-
pens. Thus, the message overhead of Set-cover is much less
than the centralized algorithms.

Fig. 6a shows the expected diffusion time, where g and
Dt are chosen according to Eq. (4) and Eq. (5), and the Face-
book trace from January 2007 to June 2007 is also used for
other three centralized algorithms to construct the network.
Specifically, we construct a network based on node contacts
recorded in the trace, identify diffusion nodes according to
each algorithm, and then calculate the expected diffusion
time for each algorithm. As shown in Fig. 6a, Community
outperforms all other algorithms, Approximation is better
than Set-cover and Na€ıve, and Na€ıve is the worst. Although
without global information, the performance of Set-cover is
comparable with Community and Approximation when k is
small, and it is also much better than Na€ıve.

Fig. 6b expected diffusion time for each algorithm
k-node set, where the information diffusion runs on the
rest of the Facebook trace for all the algorithms. Specifi-
cally, at the beginning of the rest of the Facebook trace,
the selected k-node set is set as active nodes, and then the
information is spread from the k-node set to other nodes
in the network according to the probabilistic diffusion
model, i.e., upon a node contact, the information is spread
from an active node to an inactive with a probability. Due
to sparse node contacts in the rest of the trace, the infor-
mation cannot be spread all over the network at the end
of the trace. Thus, we compare the percentage of active
nodes over all nodes for each algorithm at the end of the

Fig. 5. Performance of Set-cover with varying g and Dt in terms of mes-
sage overhead and expected diffusion time, where k ¼ 50, Dt ¼ 2 days
for (a) and (b), and k ¼ 50, g ¼ 50 for (c) and (d).

Fig. 6. Performance on the Facebook trace of Community, Approxima-
tion, Na€ıve, and Set-cover.

Fig. 7. Diffusion time of Community, Approximation, Na€ıve, and Set-cover to 10, 20, 30 and 40 percent of nodes.
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trace, which represents the performance of information
diffusion within certain time period. As shown in Fig. 6b,
Community still performs the best, Set-cover outperforms
both Approximation and Na€ıve, and Approximation is the
worst. When k ¼ 100, Community can diffusion the infor-
mation to more than 50 percent of nodes, whereas Approx-
imation can diffuse to less than 30 percent.

At mentioned above, all algorithms cannot spread
information to the entire network at the end of the trace.
Thus, we compare the time for diffusing information to
10, 20, 30 and 40 percent of nodes with varying k from 1
to 100 as shown in Fig. 7. As Approximation cannot spread
the information to 30, 40 percent of nodes at the end of
the trace, it is not included in Fig. 7c and Fig. 7d. For the
same reason, Na€ıve is not included in Fig. 7d. Similarly,
some k values are not shown in some figures (e.g., 40 in
Fig. 7d) because at the end of the trace the specified per-
centage of nodes cannot be informed with selected
S (jSj ¼ k).

As shown in Figs. 7a and 7b, Community, Set-cover and
Na€ıve can diffuse information to 10, 20 percent of nodes
with much smaller k and shorter diffusion time for the
same k values than Approximation, and Community and
Set-cover outperform Na€ıve. For example, as shown in
Fig. 7b, Community can spread the information to 20 per-
cent of nodes with k less than 20, Set-cover can achieve it
with k less than 30, Na€ıve can achieve it with k less than
40, and Approximation can achieve it with k around 60.
For k ¼ 60, the diffusion time for Community, Set-cover,
Na€ıve and Approximation is 7, 10, 13 and 17 months,
respectively. As shown in Fig. 7c, Community and Set-
cover can spread information to 30 percent of nodes with
shorter diffusion time and smaller k than Na€ıve. More-
over, Community is always the best as shown in Fig. 7.
Although Set-cover is worse than Approximation in terms
of expected diffusion time, it can spread information to
10, 20, 30 and 40 percent of nodes with smaller k and
shorter diffusion time than Approximation and Na€ıve.

In summary, Community has the best performance on the
Facebook trace, and Set-cover outperforms Approximation
and Na€ıve in terms of diffusion time.

7 CONCLUSIONS

In this paper, we addressed the problem of identifying a
small number of nodes through which the information can
be diffused to the network as soon as possible. We proposed
two algorithms: the community based algorithm and the
distributed set-cover algorithm, to solve the diffusion mini-
mization problem in mobile social networks from different
aspects. Specifically, the community-based algorithm, for
the social point of view, leverages the community structure
to select diffusion nodes, while the distributed set-cover
algorithm identifies diffusion nodes based on the informa-
tion collected by probing messages in a distributed way.
Simulation results show that the community based algo-
rithm has the best performance for both synthetic networks
and the Facebook trace. Despite the lack of global informa-
tion, the distributed set-cover algorithm outperforms the
approximation algorithm in the Facebook trace in terms of
diffusion time.
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