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Abstract—Convolutional Neural Networks (ConvNets/CNNs) have revolutionized the research in computer vision, due to their ability to
capture complex patterns, resulting in high inference accuracies. However, the increasingly complex nature of these neural networks
means that they are particularly suited for server computers with powerful GPUs. We envision that deep learning applications will be
eventually widely deployed on mobile devices, e.g., smartphones, self-driving cars, and drones. Therefore, in this paper, we aim to
understand the resource requirements of CNNs on mobile devices in terms of compute time, memory and power. First, by deploying
several popular CNNs on different mobile CPUs and GPUs, we measure and analyze the performance and resource usage for the
CNNs on a layerwise granularity. Our findings point out the potential ways of optimizing the CNN pipelines on mobile devices. Second,
we model resource requirements of core computations of CNNs. Finally, based on the measurement, and modeling, we build and
evaluate our modeling tool, Augur, which takes a CNN configuration (descriptor) as the input and estimates the compute time, memory,
and power requirements of the CNN, to give insights about whether and how efficiently a CNN can be run on a given mobile platform.
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1 INTRODUCTION

D EEP learning has become the norm of state-of-the-
art learning systems, especially in computer version.

Convolutional Neural Networks (ConvNets/CNNs) have
demonstrated impressive performance on various computer
vision tasks from classification and detection to segmenta-
tion and captioning. A CNN consists of different types of
layers (e.g., convolutional, pooling, fully connected), where
each layer performs certain transformation on the input data
and outputs the results to the next layer. Different CNNs
for computer vision tasks have been designed, from a few
layers to a thousand layers. The core of these networks are
the convolutional layers, which consist of a set of learnable
kernels that are convolved across the length and width
of the input image to produce output features. There are
several frameworks that support the training (forward and
backward pass) and inference (only forward pass) phases of
CNNs, including Caffe [1], TensorFlow [6], Torch [8], Theano
[7], etc. All of these frameworks are designed and optimized
for both training and inference on computers with powerful
GPUs.

However, we envision that deep learning applications
will be eventually widely deployed on mobile devices. It is
also expected that for computer vision tasks mobile devices
will only perform inference (forward pass), since training
can be carried out offline by computers with powerful
GPUs. In the rest of this paper, the terms “inference”, “test”
or “forward pass”, mean the same.
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Since both the frameworks, as well as the CNN models
are designed for computers with powerful GPUs, they may
not effectively and efficiently work on mobile devices due
to several factors, e.g., constrained memory and energy and
limited computing capability. Neural networks for vision
tasks are very complex – for example, VGGNet [31] has
528M parameters and requires over 15G FLOPs (FLoating-
point OPerations) to classify a single image. Due to the large
amount of parameters and FLOPs, and the need to enable
running these CNNs on resource-constrained mobile de-
vices, several works focus on accelerating the computation
of CNNs on mobile devices by compressing parameters [24],
[34], by cloud offload [16], and by distributing computation
to heterogeneous processors on-board [26]. Complementary
to these techniques, our goal is to model the computation of
CNNs in terms of performance (compute time) and resource
usage (memory and energy). Our motivation is that our
system can provide guidelines to decide when performance
optimizations, offloading, etc. are required to successfully
run analytics tasks on mobile devices. For instance, using
the output of our models, one could decide to run all the
convolutional layers on the mobile device while offloading
the fully connected layers to the cloud so as to cut down on
the memory requirement on the mobile device. Although
accurately modeling the performance and resource usage of
CNNs is very hard, we make progress towards achieving it.

This paper overviews the workflow of CNNs, shares the
experiences of deploying CNNs on mobile devices, gives the
measurements and analysis of performance and resource
usage, and models the inference phase of the CNNs on
mobile devices. In doing so we face significant challenges. (i)
Profiling overhead: to measure timing of GPU computations,
we need to add a synchronization call that waits for all the
results to come back before recording the time. As pointed
out by [3], this causes an overhead, as some cores may be
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idling while waiting for the rest of the cores to complete
the computation. We address this challenge by amortizing
this measurement cost by executing the computing task a
large number of times and averaging the running time.
This ensures that the overhead per iteration is negligible.
(ii) Different types of layers: CNNs are composed of various
types of layers, so to model the computation of all the
different types is challenging. On the other hand, since the
main computation of all these layers boils down to matrix
multiplication, we are able to model the different layers by
abstracting out the details and focusing on the core of the
computation. (iii) How matrix multiplication scales: as the core
of the computation of CNNs, it is important to understand
how the computation scales with the sizes of matrices in
terms of the compute time and resource usage. Due to
the large number of combinations of matrix sizes, this can
be very challenging. However, by extracting the matrix
multiplication sizes of the popular CNNs, we observe that
all of them result into a small set of matrix sizes and thus
we are able to accurately model them for different mobile
platforms.

Contributions: (i) We deploy the popular CNN models
including AlexNet [25], VGGNet [31], GoogleNet [32], and
ResNet [17] using the Caffe framework [22] on mobile
platforms (i.e., NVIDIA TK1 and TX1), where the inference
phase is run on both CPUs and GPUs (Section 3). (ii) We
measure and analyze the performance and resource usage
of the inference phase of these CNN models on a layerwise
granularity. Our findings point out the potential ways of
optimizing the computation of CNNs on mobile devices
(Section 4). (iii) We profile and model the performance
and resource usage of CNNs. We build a modeling tool,
Augur, that takes a CNN model descriptor as the input and
estimates the performance and resource usage of the CNN
so as to give insights on how well the CNN can be run on
a mobile platform without having to implement and deploy
it (Section 5).

2 BACKGROUND

2.1 Overview of CNNs
Our goal is to model the resource requirements of the
forward pass of a CNN. The CNN architecture is typically
composed of convolutional, normalization, and subsam-
pling layers – optionally followed by fully connected layers.
We overview these layers below, as it lays the foundation
for the rest of our work.
Convolutional Layer: The convolutional (CONV) layers
form the core of CNNs. The parameters of this layer are
a set of kernels (weights) and biases learned during the
training phase. During the forward pass, kernels are con-
volved across the width, height, and depth of the input,
computing the dot product between the kernel and the input
and producing the output volume. Since the main operation
is dot product between the kernels and local regions of the
input, the forward pass of a CONV layer can be formulated
as a matrix multiplication. For the input volume, each local
region (a block of pixels) is stretched into a column of a
matrix, and the number of columns is the total number of
local regions (im2col). The kernel is stretched into a column
of another matrix, and the number of columns is the number

of kernels. Finally, the product of the matrix multiplication
is reshaped to the output volume with a depth equal to
the number of kernels (col2im). For example, the input
of AlexNet [227 × 227 × 3] (width × height × depth) is
convolved with 96 kernels at size [11 × 11 × 3] and with a
stride 4, and hence there are 55 locations along both width
and height. So, the matrix for the input is [3025 × 363], the
matrix of the kernels is [363× 96], and the produced matrix
is [3025× 96] and finally reshaped to [55× 55× 96].

The CONV layer is commonly implemented using the
matrix multiplication function of Basic Linear Algebra Sub-
programs (BLAS) on CPUs and cuBLAS [2] on CUDA GPUs
for acceleration. However, as many values in the input
volume are replicated multiple times in the matrix stretched
from the input volume, it uses more memory than the input
volume itself.
Pooling Layer: The pooling (POOL) layer commonly sits
between CONV layers and performs downsampling to re-
duce the spatial size (width and height) of the features. The
pooling is performed on local regions with the kernel size
defined by a CNN model. The most common pooling opera-
tion in the state-of-the-art CNN models is max pooling. The
pooling layer independently operates on the input volume
without parameters, and hence its implementation is simple.
Normalization Layer: Two types of normalization layers
are commonly used in CNNs: local response normaliza-
tion (LRN) and batch normalization (BatchNorm). However,
LRN’s role has been outperformed by other techniques, such
as BatchNorm, and thus here we only detail BatchNorm.

BatchNorm is introduced to reduce the internal covariant
shift (change in distribution of inputs due to the weight
updates in the previous layer) during training [21]. During
test phase, BatchNorm normalizes the input volume on each
dimension (weight × height), e.g., for the i-th dimension, as
follows,

x̂(i) =
x(i) − E[x(i)]√

Var[x(i)]
,

where E[x(i)] and Var[x(i)] are learned during the training
phase for dimension i.
Fully Connected Layer: Each neuron in a fully connected
(FC) layer is connected to all activations in the previous
layer. Due to the full connectivity, there are a huge num-
ber of parameters, which places heavy burden on memory
usage and computation. Recently, FC layers have fallen out
of favor, e.g., the latest CNNs, i.e., GoogleNet and ResNet,
only have one fully connected layer as the classifier. This
dramatically reduces the number of parameters, e.g., 26MB
parameters in GoogleNet while 233MB in AlexNet, and it
was found that FC layers of VGGNet can be removed with
no performance reduction. Therefore, it is anticipated that
CNNs will eliminate the use of FC layers. The forward pass
of FC layers is also implemented as a matrix multiplication.

Besides these four layers, rectified linear unit (ReLU)
layer that applies an elementwise function, e.g., max(0, x),
on the input volume, is also commonly used in CNNs.
However, ReLU is simple, has no parameters, and does not
change the size of input volume. Thus we skip the detail of
ReLU layer.
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TABLE 1
CNN models

Layer AlexNet VGGNet GoogleNet ResNet Inception SqueezeNet MobileNet

CONV 5 13 57 53 94 26 28
POOL 3 5 14 2 14 4 1
NORM 2 2 53 94 27
ReLU 7 15 57 49 94 26 27

FC 3 3 1 1 1
Concat 9 11 8
Scale 53 94 27

Eltwise 16

Total 20 36 140 227 402 64 110

2.2 Related Work
Although CNNs have been applied to various computer
vision applications on different computing platforms, only
a few works consider running CNNs on mobile devices,
which we envision to be a significant future area for the
deployment of deep learning applications.

Among these works, many focus on accelerating the
computation of CNNs, e.g., by compressing parameters [15],
[24], [34], by cloud offload [16], [23], and by distributing
computation to heterogeneous processors (GPU, DSP) on-
board [12], [19], [26]. Some consider reducing the memory
usage [13], [20], [30] and energy [11] while maintaining
high inference accuracy. The resource bottlenecks of running
CNNs on mobile devices are preliminarily investigated in
[27]. Different CNNs are benchmarked in [9], but it does not
consider how to model the compute requirements of CNNs.

While CNNs grow from a few layers to a thousand
layers, the computational capability of mobile devices con-
tinues to improve. As a result, different mobile devices
perform differently on different CNNs, and hence custom
optimization and offloading may or may not be needed,
depending on whether and how efficiently a CNN can be
run on a given mobile platform. This question motivates
our work.

3 MEASUREMENT SET-UP

To understand the resource requirements of the forward
pass of CNNs, we deployed several CNN models on two
mobile platforms using the popular deep learning frame-
work – Caffe.
Platforms: Although some frameworks (e.g., Caffe, Torch)
can run on Android or iOS, they do not support GPU accel-
eration on off-the-shelf mobile devices, such as smartphones
or tablets. To understand the performance and resource
usage of CNNs on both mobile CPUs and GPUs, in this
paper, we focus on two developer kits for low power edge
devices – NVIDIA TK1 and TX1.

TK1 is equipped with a 2.3GHz quad-core ARM Cortex-
15A 32bit CPU, 192 CUDA cores Kepler GPU, and 2GB
DDR3L RAM. TX1 is more powerful and has a 1.9GHz
quad-core ARM Cortex-A57 64bit CPU, 256 CUDA cores
Maxwell GPU, and 4GB LPDDR4 RAM. The system-on-chip
(including CPU and GPU) of TK1 and TX1 also appears in
many off-the-shelf mobile devices, such as Google Nexus 9
and Pixel C, but none of these devices are enabled to support
CUDA, on which deep learning frameworks are built for
GPU acceleration. Thus, for ease of experimentation we

choose NVIDIA TK1 and TX1, the results of which should
indicate the performance of CNNs on mobile devices. More-
over, to mitigate the effect of slow start on CPU and GPU,
we disable CPU scaling and force the CPU cores to run at
max performance and also set the GPU frequency to the
highest. Note that in the early version of this work [29], we
have investigated the case with frequency scaling.
Framework: There are several frameworks for deep neural
networks. As mentioned before, most of the frameworks
use BLAS on CPUs and cuBLAS on GPUs for the CNN
computations and thus show similar performance. In this
paper, we use the popular Caffe framework, where the
choice of BLAS is OpenBLAS [5].
CNN Models: For the measurement, we consider the most
popular CNN models including AlexNet, VGGNet (VGG-
16), GoogleNet, and ResNet (ResNet-50). We also investigate
several recent CNN models including Inception (Inception-
v3) [33], SqueezeNet [20], and MobileNet [18]. Although
the architectures of these models are quite different, from
several layers to more than one hundred layers and from
regular stacked layers to branched and stacked layers, they
are mainly built on the basic layers of CNNs. Table 1 shows
how many these layers each model contains.

4 INITIAL MEASUREMENT STUDY

In this section, we investigate the computation, compute
time, and resource usage of the most popular deep learning
models on different mobile platforms and then understand
the constraints of running CNNs on mobile platforms.

4.1 Timing
First, we measure the timing of each CNN model on differ-
ent platforms using CPU and GPU in terms of (i) complete
forward pass: i.e., timing is measured for the entire forward
pass and (ii) as summation of individual layer times. We also
calculate the number of FLOPs for each model and each type
of layer.
AlexNet has the fewest layers among these models and
indeed requires the least amount of computation in terms
of FLOPs, i.e., 729M, where CONV and FC layers take more
than 99%, as shown in Table 2. On the CPU of both TK1 and
TX1, the summation of layerwise timing perfectly matches
with that of a full forward pass, which are about 600ms
on TK1 CPU and 300ms on TX1 CPU. The CONV layers
on TX1 run much faster than on TK1 (more than 4x), but,
surprisingly, the FC layers are slower. Since the basic com-
putation of both CONV and FC is matrix multiplication, the
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TABLE 2
Timing benchmarks on AlexNet

Platform
Layerwise Pass (ms)

Total (ms) Forward Pass (ms)
CONV POOL LRN ReLU FC

TK1
CPU

318.9±0.3 6.1±0.0 103.7±0.0 4.6±0.0 186.7±0.1
618.2±0.4 618.8±0.3

51.58% 0.98% 16.78% 0.75% 29.87%

GPU
15.1±0.0 0.7±0.0 1.0±0.0 0.8±0.0 26.0±0.1

43.9±0.1 43.2±0.4
34.46% 1.50% 2.27% 1.71% 59.20%

TX1
CPU

74.9±1.5 8.3±0.5 51.6±0.3 1.8±0.0 200.2±0.1
336.9±1.5 335.5±2.7

22.24% 2.48% 15.31% 0.54% 59.42%

GPU
6.7±0.5 0.4±0.0 0.7±0.0 0.5±0.0 11.7±0.0

20.3±0.5 19.7±0.6
33.19% 1.89% 3.53% 2.40% 57.71%

FLOPs
666M 1M 2M 0.7M 59M

729M
91.36% 0.14% 0.27% 0.10% 8.09%

TABLE 3
Timing benchmarks on VGGNet

Platform
Layerwise Pass (ms)

Total (ms) Forward Pass (ms)
CONV POOL ReLU FC

TK1
CPU

7151.7±0.5 60.1±0.1 95.5±0.0 382.8±0.2
7690.2±0.5 7689.6±0.3

93.00% 0.78% 1.24% 4.96%

GPU
245.0±0.3 4.1±0.0 9.9±0.1 57.8±0.0

316.2±0.3 316.4±0.3
77.50% 1.29% 3.12% 17.95%

TX1
CPU

1100.2±2.4 70.2±0.3 36.9±0.1 402.5±0.2
1609.9±2.4 1608.2±1.0

68.34% 4.36% 2.29% 25.00%

GPU
109.0±0.7 2.2±0.1 5.9±0.3 32.4±0.1

149.73±1.3 147.8±0.8
72.77% 1.46% 3.91% 21.61%

FLOPs
15360M 6M 14M 124M

15503M
99.08% 0.04% 0.09% 0.79%

results seem contradictory at first. However, we investigate
the problem and give the reasonable explanations below.

First, even though the clock is slower on TX1 compared
to TK1 – 1.9 GHz vs. 2.3 GHz, TX1 runs more instructions
per clock cycle compared to TK1 (3 vs. 2) and hence the
performance of TX1 CPU is expected to be better than TK1
CPU as we see for the CONV layers. Second, FC layers have
many more parameters than the CONV layers. Therefore,
FC layers are more bottlenecked by the memory whereas
CONV layers are more compute bound. Third, the L1 data
cache size is 32 KB on both and L2 cache is larger on TK1
compared to TX1. Even if cache size is same on both, as the
address is longer on TX1 (64 bit vs. 32 bit), more memory
is used for addressing and thus less memory is available to
save the data itself on the cache. This means that the CPU
needs to fetch data from RAM to the cache more often while
executing the FC layers on TX1 due to the large number of
parameters which causes the slow down.

GPUs can greatly accelerate the computation of a CNN
and thus significantly improves the performance over CPUs
as expected, i.e., more than 10x faster on TK1 and TX1. The
more advanced TX1 GPU outperforms TK1 GPU on all types
of layers as expected and has better performance (about
2x) in both the summation of layerwise passes and a full
forward pass. Moreover, the summation of layerwise timing
also matches with that of a full forward pass on GPUs.
VGGNet has 2x CONV layers compared to AlexNet (Ta-
ble 1). However, the number of operations is 20x that of
AlexNet, as shown in Table 3, mainly because VGGNet
uses much larger feature maps. While other results a follow

similar pattern as AlexNet, the throughput of both CPU and
GPU on VGGNet is higher than on AlexNet. For example,
the throughput of TK1 CPU on AlexNet is 1 GFLOPS
(GFLOPs per Second) and of VGGNet is 2 GFLOPS. This is
mainly because both CPU and GPU have better throughput
on matrix multiplication with larger size.
GoogleNet has more than 50 CONV layers, many more than
AlexNet. However, the CONV layers have only two times
more FLOPs than that of AlexNet. The main reason is that
the size of the kernels and feature maps is small, which
dramatically reduces the number of operations. GoogleNet
also employs LRN that significantly affects the performance
of the CPU on both TK1 and TX1, similar to AlexNet. For
example, it takes more than 33% of total time on TX1 CPU.

However, we face one challenge: the summation of lay-
erwise timing does not match the timing of the full forward
pass on GPUs any more. The reason for the mismatch in the
timing is that CUDA supports asynchronous programming.
Before time measurement, an API (i.e., cudaDeviceSynchro-
nize) has to be called to make sure that all cores have
finished their tasks. This explicit synchronization is the
overhead of each time measurement on GPUs.

The difference between layerwise timing and full for-
ward pass on GoogleNet is much larger than AlexNet
and VGGNet (they are negligible) as shown in Table 4.
GoogleNet has one hundred more layers than AlexNet and
VGGNet and thus much higher measuring overhead on the
GPUs. This is a motivation for us to devise measurement
techniques that can overcome these measurement overheads
as will be discussed later in Section 5.
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TABLE 4
Timing benchmarks on GoogleNet

Platform
Layerwise Pass (ms)

Total (ms) Forward Pass (ms)
CONV POOL LRN ReLU Concat FC

TK1
CPU

753.3±0.1 68.7±0.0 214.2±0.0 22.8±0.0 2.0±0.0 2.7±0.0
1064.0±0.1 1063.8±0.2

70.80% 6.46% 20.13% 2.14% 0.19% 0.25%

GPU
47.60±0.2 5.6±0.1 1.8±0.0 5.8±0.1 2.2±0.1 0.5±0.0

64.2 ±0.3 57.6±0.3
74.17% 8.65% 2.81% 9.03% 3.36% 0.79%

TX1
CPU

159.6±3.3 92.7±0.8 136.8±0.6 8.9±0.0 1.6±0.0 2.7±0.0
402.5±2.1 399.1±1.3

39.66% 23.03% 33.98% 2.21% 0.39% 0.68%

GPU
26.0±2.4 3.0±0.2 1.0±0.0 3.6±1.0 1.3±0.4 0.2±0.0

35.6±4.1 31.9±2.5
73.03% 8.39% 2.88% 10.06% 3.66% 0.70%

FLOPs
1585M 13M 3M 3M 1M

1606M
98.80% 0.80% 0.20% 0.20% 0.06%

TABLE 5
Timing benchmarks on ResNet

Platform
Layerwise Pass (ms)

Total (ms) Forward Pass (ms)
CONV POOL BatchNorm ReLU Scale Eltwise FC

TK1
CPU

1826.0±0.2 8.8±0.0 97.0±0.1 64.0±0.0 42.0±0.1 24.8±0.1 5.3±0.0
2068.0±0.2 2067.0±0.1

88.30% 0.42% 4.69% 3.09% 2.03% 1.20% 0.26%

GPU
82.4±0.4 1.5±0.0 59.2±0.3 9.7±0.1 19.6±0.2 12.9±0.1 1.0±0.0

187.8±0.5 148.6±0.4
43.86% 0.81% 31.52% 5.18% 10.46% 6.88% 0.54%

TX1
CPU

346.1±0.7 13.7±0.0 77.1±1.2 24.8±0.0 41.8±0.5 19.4±0.6 5.3±0.0
528.4±1.1 525.6±0.7

65.50% 2.60% 14.60% 4.69% 7.90% 3.67% 1.01%

GPU
39.2±3.3 0.6±0.0 31.4±3.3 5.0±0.4 11.5±0.6 7.9±0.2 0.4±0.0

96.6±5.4 77.7±0.7
40.56% 0.61% 32.54% 5.15% 11.88% 8.22% 0.45%

FLOPs
3866M 2M 32M 9M 11M 6M 2M

3922M
98.59% 0.05% 0.81% 0.23% 0.27% 0.14% 0.05%

The measuring overhead is much less than that on
GPUs with frequency scaling in [29]. This is because the
frequency of GPUs is scaled down before performing time
measurement (during the computing of a layer) and thus the
computation of each layer takes longer time than in a full
forward pass where the frequency of GPUs is more steady.

GoogleNet has a layer, named Concat, that does not
involve any computation, but concatenates the outputs from
previous layers, thus involving memory operations only.
On the shared-memory architecture of mobile devices, the
memory operations of GPUs may be slower than CPUs due
to the slower frequency, e.g., 852MHz compared to 2.3GHz
on TK1, and synchronization. This is reflected in the timing
measurements on Concat layers. In Table 4, we can see
that TK1 CPU slightly outperforms GPU on Concat layers.
During a full forward pass, the GPU has to wait for a Concat
layer is fully completed (i.e., an implicit synchronization)
before proceeding to next layer. Therefore, the measurement
should reflect the actual cost of the Concat layer.
ResNet has more than two hundred layers. ResNet includes
BatchNorm, Scale, and Eltwise that are not commonly used
by other models. These layers are not expensive in term of
FLOPs (less than 1% for each type) as shown in Table 5.
However, BatchNorm takes a much larger fraction of total
time, especially on the GPUs, i.e., about 30% on both GPUs.
This is because BatchNorm cannot be accelerated by the
GPUs as much as CONV, and it is only about 2x faster
than the CPUs, as shown in Table 5. Moreover, as ResNet
has more layers than GoogleNet, the measurement overhead
increases and hence the difference between the summation

of layerwise passes and full forward pass enlarges. As
mentioned before, we develop schemes to overcome this
overhead in Section 5.

4.2 Memory

The memory requirement to run a CNN comes from three
major sources: (i) the memory that holds the parameters of
the CNN; (ii) the memory that stores intermediate data of
the CNN; and (iii) the workspace for computation. A major-
ity of the CNN parameters come from CONV and FC layers
(i.e., weights and biases). Intermediate data is the output of
each layer (i.e., the input of next layer), e.g., feature maps.
Some types of layers require additional space to perform
computation, e.g., on CONV layers, additional memory is
needed to hold the matrix stretched from the input data
for matrix multiplication. The workspace memory is mostly
consumed by the matrix multiplication of CONV layers. The
NVIDIA CUDA Deep Neural Network library (cuDNN) [4]
can reduce the workspace by sacrificing the computation
speed on GPUs. However, as the workspace is not the most
significant part, cuDNN cannot reduce the memory usage
of CNNs dramatically.

Table 6 shows the memory of weights and biases of
CONV and FC layers, intermediate data, and workspace of
CONV layers for each CNN. The memory size of each type
can be easily determined by parsing the model descriptor
(e.g., a prototxt file in Caffe). Table 6 also gives the mea-
sured memory usage of Caffe, running each CNN on these
platforms. One can see that deeper CNNs (from AlexNet
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TABLE 6
Memory of CNN models on platforms (MB)

Type/Platform AlexNet VGGNet GoogleNet ResNet

Weights & Biases 233 528 26 97
Data 8 110 53 221

Workspace 11 168 46 79

TK1
CPU 324 972 161 409
GPU 560 1508 196 533

TX1
CPU 362 1013 200 453
GPU 589 1537 226 562

to ResNet) may not require more memory, especially for
GoogleNet, which takes the least memory among them.
Memory usage on TX1 is more than TK1, because TK1 is
running a 32-bit OS while TX1 is running a 64-bit OS, which
incurs more memory usage for the framework itself.

To speed up the running time of CNNs, all memory
should be allocated beforehand and not released during the
computation. Although existing frameworks (e.g., Caffe1)
follow this rule, they are designed for training and testing
on workstations with powerful GPUs, and thus not quite
suitable for mobile devices in terms of memory manage-
ment.
Unified Memory Architecture: Unlike workstations2 where
GPUs have dedicated memory, mobile platforms usually
have a unified memory architecture, where the GPU shares
system memory with the CPU. On workstations, in the
current implementation of Caffe, data is transferred to and
from the memory of GPU for access, which is efficient on
workstations. However, on united memory architecture, e.g.,
TK1 and TX1, memory transfer from CPU to GPU simply
generates a redundant data copy on the system memory.
As shown in Table 6, on both TK1 and TX1, the memory
usage on GPU is always more than CPU, and the additional
memory is actually used to hold a redundant copy of the
parameters of the CNNs (mostly weights and biases). For
example, running AlexNet on TK1 GPU requires 560MB
memory, which is 236MB more than on CPU, while the
weights and biases of AlexNet are 233MB in total. This also
stands for other CNNs.

Mobile GPUs can directly access data by mapping host
memory without degrading performance and incurring
memory transfer (i.e., zero-copy memory). Existing frame-
works, including Caffe, Torch, and Theano, do not take into
consideration the unified memory architecture for mobile
platforms. On the contrary, the unified memory architecture
can be exploited to design a tailored computing framework
for mobile devices. (i) We can eliminate memory transfers
between CPU and GPU. (ii) We can compute a CNN in the
most efficient way; i.e., each layer can be executed on the
most efficient unit, switching back and forth between GPU
and CPU, without incurring additional memory transfer
overhead.

1. Caffe allocates the memory for intermediate data on demand
(lazily) during the first run, and thus it takes longer time than later
runs.

2. Although GPUs on workstations can also directly access host
memory over PCIe, e.g., CUDA kernels, reading data over PCIe is
limited by PCIe bandwidth (upto 32GB/s) which is much slower than
reading data from GPU memory (limit 200GB/s).

4.3 Power and Energy
The power supply of TK1 and TX1 provides power for all
the components of the boards. Therefore, it is difficult to
capture the power variation of CPU and GPU by measuring
the power supply. Even if it could capture the variation,
it is also difficult to synchronize the timing for the power
measurement, since the computation of CNN models is
instantaneous, especially on GPUs. Therefore, it is preferred
to use the power monitor on-board to measure the power
of CPU and GPU. However, the TK1 board is not equipped
with such power monitors (only for the power of the board),
and thus we only give the power and energy measurements
for TX1.

The power is measured by reading the output of
INA3221 monitors for CPU and GPU on TX1. The output of
INA3221 monitors is accessed about every two milliseconds
and every one millisecond for the computation on TX1 CPU
and GPU, respectively, such that it is able to capture the
variation of the power and result in negligible overhead. In
addition, as the compute time of some layers is less than the
time interval between reading accesses, the energy usage of
CNNs is calculated for individual forward passes instead of
individual layers.

The power and energy of forward passes of AlexNet,
VGGNet, GoogleNet, and ResNet is illustrated in Fig. 1, 2,
3, and 4, respectively.
AlexNet. When AlexNet is run on TX1 CPU, as depicted
in Fig. 1a, the CPU power gradually increases and hits
a plateau, which is about 5000mW. Although the power
fluctuates on the plateau, the fluctuations are small. As the
CPU power is not always at the peak when performing the
first forward pass, it consumes less energy than the follow-
ing forward passes (i.e., 1.39J vs. 1.62J). On TX1 GPU, as
shown in Fig. 1b, the sum power of CPU and GPU is about
6000mW. As the computation is performed on the GPU, the
CPU power is only about 1000mW. The energy expenditure
per forward pass is only 0.11J, about one fifteenth of TX1
CPU. This is because the computation finishes much faster
on the GPU.
VGGNet. The peak power of VGGNet on both TX1 CPU
and GPU is higher than AlexNet, as illustrated in Fig. 2a
and 2b. This is mainly because the throughput of CPU and
GPU is higher on VGGNet than AlexNet as discussed in
Section 4.1.

Different from AlexNet, at the end of a forward pass,
the CPU power drops dramatically in Fig. 2a, and the GPU
power also slides downward in Fig. 2b. This behavior can be
explained as follows. First, VGGNet has much larger FC lay-
ers than AlexNet, the compute time of which is also much
longer than AlexNet, as shown in Table 2 and 3. In addition,
as discussed before, FC layers incur a lot of memory accesses
and thus the computation of FC layers is not as intensive as
CONV layers. Therefore, given the less intensive workload
and longer compute time, the throughput of CPU and GPU
goes down when running FC layers at the end of a forward
pass of VGGNet, and so does the power.
GoogleNet and ResNet. On TX1 CPU, due the unique ar-
chitecture, the power of GoogleNet and ResNet also exhibits
a unique pattern, and the variation pattern is relatively
consistent across forward passes, as depicted in Fig. 3a and
4a.
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Fig. 1. Power and energy of AlexNet on TX1.
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Fig. 2. Power and energy of VGGNet on TX1.

GoogleNet and ResNet have one hundred more layers
than AlexNet and VGGNet, which means more workload
for the CPU to shift computation to the GPU when using
GPUs for acceleration. Therefore, in Fig. 3b and 4b, the CPU
power of both GoogleNet and ResNet is higher that of other
two models. Moreover, the sum power of CPU and GPU
of both GoogleNet and ResNet fluctuates more frequently,
since the architecture of GoogleNet and ResNet is largely
different from AlexNet and VGGNet (i.e., branched and
stacked vs. stacked).

4.4 Analysis

FLOPs. As the throughput of both CPU and GPU is higher
on the CNN with more FLOPs (e.g., the throughput of TX1
CPU and GPU on VGGNet is about 10 and 100 GFLOPS,
respectively, while 2 and 30 GFLOPS on AlexNet, from Ta-
ble 2 and 3) and a significant amount of memory operations
are involved with the computation of a CNN, FLOPs cannot
accurately reflect the compute time of a CNN. Therefore,
estimating the compute time of CNNs directly from their
FLOPs is not feasible.
CONV and FC Layer: The computation of CONV and FC
layers in most models accounts for a majority of FLOPs
(more than 98% in all four models) and running time.
Moreover, the power of CPU and GPU is mostly steady
during a forward pass, and thus the computing of CONV
and FC layers also consumes the most energy. A natural
question is whether we can measure these layers instead
of the entire network? However, this apparently encoun-
ters other difficulties, i.e., layerwise measuring overhead on
GPUs, and we have no way to know the exact overhead for
each layer, which is hidden by GPUs.
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Fig. 3. Power and energy of GoogleNet on TX1.
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Fig. 4. Power and energy of ResNet on TX1.

Matrix Multiplication: The core of CONV and FC layers
are matrix multiplications. Therefore, rather than going into
the details of each of the individual layers, if we are able to
extract the matrix multiplication component of the layer, we
would be able to accurately capture the running time and
energy of these layers.

4.5 Additional CNN Models

The measurement of Inception, SqueezeNet, and MobileNet
is shown in Table 7. Inception is a more accurate version
of GoogleNet with similar branched and stacked layers.
However, as shown in Table 7, Inception takes more mem-
ory, longer compute time, and more energy, compared with
GoogleNet. SqueezeNet has AlexNet-level accuracy with
50x fewer parameters. Indeed, it takes much less memory,
but the compute time and energy of SqueezeNet on TX1
GPU is still similar to AlexNet. Different from other CNN
models, MobileNet and ShuffleNet [35] respectively employ
depthwise convolution and channel shuffle to reduce the
computation of CONV layer. However, both require a cus-
tomized CONV layer. Although depthwise convolution can
be performed based on regular CONV layer in Caffe, the
computation is not optimized and thus MobileNet (without
tuning computation) runs slow as shown in Table 7.

5 AUGUR

We aim to build a modeling tool that can estimate the
compute time, memory, and energy usage of any given
CNN descriptor on specific mobile platforms without im-
plementation and deployment. This way, we can take all
the factors into consideration during the design phase of a



8

TABLE 7
Performance of additional CNN models on TX1

Inception (v3) SqueezeNet MobileNet (v1)

FLOPs 5791M 875M 599M

Memory (MB)
Weights & Biases 91 5 16

Data 196 51 78
Workspace 180 29 10

Forward Pass (ms)
CPU 852.3±56.3 152.2±3.1 219.9±25.6
GPU 94.0±0.8 18.1±1.0 137.3±0.6

Energy (mJ)
CPU 3842.2±202.2 643.9±32.9 953.0±35.2
GPU 739.7±31.9 112.0±11.6 656.7±18.0

CNN. This is critical when designing CNNs for resource-
constrained mobile devices.

5.1 Profiling

The basic idea is simple. We first find the matrix multiplica-
tions that form the core of the CNN computation. Then we
measure their performance based on the BLAS and cuBLAS
libraries, which are commonly employed to perform matrix
multiplication on CPU and GPU, respectively, in the existing
frameworks.
Extract matrix sizes: To find all matrix multiplications and
their sizes, we need to parse the descriptor of a CNN. The
dimension of input (e.g., images and feature maps) and
network parameters (e.g., convolution kernels) determines
two matrix sizes (that are to be multiplied) at a CONV or
FC layer. As the dimension of feature maps can be changed
by some other layers, e.g., POOL layers, we need to trace the
dimension of feature maps layer by layer. However, this can
be easily done by parsing parameter settings at each layer,
such as zero-padding (P ), stride (S), the number of output
feature maps (N ). For instance, in case of a CONV layer, let
I denote the spatial dimension of the input feature map, O
denote the spatial dimension of the output feature map, K
denote the 3D volume of the convolution kernels. Then, we
have:

Ow = b(Iw −Kw + 2P )/Sc+ 1

Oh = b(Ih −Kh + 2P )/Sc+ 1.

Then, the matrix multiplication at the CONV layer is [(Ow ·
Oh)× (Kw ·Kh ·Kd)][(Kw ·Kh ·Kd)×N ].
Mitigate measurement overhead: Layerwise timing incurs
overhead on GPUs and may cause a large deviation from a
full forward pass. Moreover, the overhead is not fixed and
varies over each measurement. As illustrated in Table 4 and
5, the measurement overhead (the difference between the
summation of layerwise measurements and a full forward
pass) of GoogleNet (131 measurements) on TX1 GPU is 3.7
ms (more than 10% of a full forward pass), while the over-
head of ResNet (227 measurements) is 18.9 ms (more than
20%). Therefore, we need a way to mitigate the measuring
overhead on GPUs for accurate timing and energy of matrix
multiplication.

Timing measurements on GPUs can only been recorded
after all cores finish their tasks. In a full forward pass, timing
is only recorded at the last layer. Therefore, a core may
be assigned with the computation of following layers and

thus it can continuously perform the computation without
synchronization. For example, after finishing the multiply-
add operations for the matrix multiplication at a CONV
layer, a core can continue to calculate the max function of
next ReLU layer on the output of multiply-add operations.
If layerwise timing is recorded, all cores have to wait until
all multiply-add operations of the CONV layer have been
completed.

The idea of mitigating the measurement overhead is
simple. To benchmark a matrix multiplication, we keep
GPUs iteratively running the matrix multiplication task, in
a way that GPU cores can continuously perform multiply-
add operations without synchronization, before recording
the end time. Then, the measurement overhead is amortized
over all the iterations, giving accurate timing estimates.
When the number of iterations is large enough, the overhead
is negligible. Our approach shares a similar basic idea with
[10] and [14]. In our experiments we measure the timing
of a large number of computing iterations on a matrix
multiplication and use the averaged value of each iteration
as the running time of the matrix multiplication.
Approximate a forward pass by matrix multiplications: In
Fig. 5, we study the fraction of the time spent by matrix
multiplications (matmuls) in a full forward pass. We do so,
by extracting the matmuls, measuring them, and then com-
paring with the measurement of the full forward pass. Note
that due to the averaging methodology explained above,
the measurement overhead for matmuls in this section is
negligible.

First, as seen in Fig. 5a, matmuls on TK1 CPU take a large
portion of the forward pass time – 79.38%, 95.99%, 70.05%,
and 91.22% for AlexNet, VGGNet, GoogleNet, and ResNet,
respectively. Note that this is very close to the time taken
by CONV and FC layers from Table 2, 3, 4, and 5 (81.45%,
97.96%, 71.05%, and 88.56%). Second, the trend is similar on
TX1 CPU, as depicted in Fig. 5b, except GoogleNet (only
about 36% time spent on matmuls), which is caused by the
particular combination of the architecture of TX1 CPU and
GoogleNet as discussed in Section 4.1. However, matmuls
of GoogleNet still approximate the time taken by CONV
and FC layers, which is about 40% from Table 4. Third, the
trend on TK1 and TX1 GPUs is similar to the trend on TK1
and TX1 CPUs for AlexNet and VGGNet, as seen in Fig. 5c
and 5d. In addition, on TK1 and TX1 GPUs, matmuls take a
similar fraction of the forward pass time for each CNN, e.g.,
88.89% on TK1 GPU and 83.25% on TX1 GPU for AlexNet.

One thing to note is that while matmuls of GoogleNet
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Fig. 5. Compute time of matrix multiplication and forward pass of
AlexNet, VGGNet, GoogleNet, and ResNet on mobile platforms.
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Fig. 6. Energy of matrix multiplication and forward pass of AlexNet,
VGGNet, GoogleNet, and ResNet on TX1.

on GPUs only take about 50% of the time of a forward
pass, our previous measurement in Table 4, showed that
CONV and FC layers take more than 70%. We believe
this is because the matmuls are performed on GPUs with-
out taking into account dependencies, whereas, GoogleNet
consists of inception components, each of which has four
branches of CONV layers in parallel. Before proceeding to
next inception component, all four branches of CONV layers
have to be competed. How to handle such dependencies is
part of our future work.

Fig. 6 illustrates the comparison between the energy
spent by matmuls and by a forward pass. First, as seen
in Fig. 6a, on TX1 CPU, the energy consumed by matmuls
is about 78%, 83%, 34%, and 73% of the forward pass for

AlexNet, VGGNet, GoogleNet, and ResNet, respectively,
which matches the fraction of compute time taken by
matmuls in Fig. 5b, as expected. However, on TX1 GPU,
as illustrated in Fig. 6b, the fraction of energy spent by
matmuls is more than the fraction of compute time taken
by matmuls for all the CNNs, and surprisingly matmuls
even spend more energy than the full forward pass for
AlexNet and VGGNet. The results seem conflicting, but we
investigate and explain the reason below.

First, the throughput of CPUs is limited, compared to
GPUs. Thus, the computing of either a forward pass or
matmuls of a CNN can easily reach the maximum through-
put of a CPU for the CNN. This means the CPU power
when performing a forward pass and matmuls is similar.
Therefore, the ratio of energy spent by matmuls over that of
a forward pass matches that of compute time.

Second, as matmuls take the most computation of CNNs,
the power of TX1 GPU when performing matmuls should
be higher than performing other operations (other layers
rather than CONV and FC). Therefore, the ratio of energy
consumed by matmuls over that of a forward pass is higher
than that of compute time.

Third, for AlexNet and VGGNet, the compute time of
CONV and FC layers takes a large proportion of forward
passes, i.e., 90.9% and 94.38%, respectively, as in Table 2 and
3 (the measurement overhead is negligible for AlexNet and
VGGNet). When only the matmuls of the two CNNs are
run, the compute time is decreased to 83.25% and 77.60%,
respectively. This indicates that the throughput of TX1 GPU
when running the matmuls is higher than while running the
forward passes, and so is the power. As the compute time
of the matmuls of AlexNet and VGGNet is still close to the
forward passes, it is possible that matmuls consume more
energy than the forward passes. However, it is expected the
difference between them is minor, because when the power
(throughput) goes up, the compute time goes down.

In summary, for most cases, the compute time and en-
ergy of matmuls is close to that of a forward pass of a CNN
on mobile platforms. Thus, we can predict the compute time
and energy of matmuls, to be able to approximately estimate
that of a CNN.

5.2 Modeling

So far, we have exactly measured the compute time and
energy of matmuls of the CNNs. In this section, we aim
to model them, to be able to predict the compute time and
energy, just from the matrix sizes. To do so, we benchmark
several matrix sizes, as explained below, to understand
the relationship between the size of the matrices and the
compute time and energy. Based on the relationship, we can
estimate the compute time and energy of any matmul.

Given the matmul of [n× k] and [k×m] (the number of
FLOPs is n ×m × k) performed by a CONV layer, n is the
number of kernels, k is the size of a kernel in 3D (width ×
height × depth, where depth is the number of input feature
maps), and m is the spatial size (width × height) of output
feature maps.

CNNs follow special rules on these parameters of CONV
layers. The number of kernels n is usually a multiple of 16,
commonly from 32 to 512. The spatial size of a kernel is
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Fig. 7. Compute time of matrix multiplication on TK1 CPU with varying n, m, and k.
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Fig. 8. Compute time of matrix multiplication on TX1 CPU with varying n, m, and k.

0
200

400 0
5 × 103

10 × 1030

10

20

·102

(256, 282)(384, 142)

(32, 1122)

(64, 562)

(96, 72)

(128, 1122)

(512, 1122)

n m

En
er
gy

(m
J)

1
(a) effect of n and m, where k = 576

0
200

400 0
1 × 103

2 × 103
3 × 1030

5

10

·102

(96, 64 × 12)(256, 64 × 3
2)

(32, 64 × 52)
(64, 256 × 32)

(128, 64 × 72)

(384, 128 × 32)

(512, 64 × 72)

n k

En
er
gy

(m
J)

1
(b) effect of n and k, where m = 282

0
1 × 103

2 × 103
3 × 103

1 × 103
2 × 103

3 × 1030

10

20

·102

(64 × 32, 72) (64 × 52, 282)

(256 × 32, 142)

(64 × 72, 562)
(128 × 32, 562)

(64 × 72, 562)

k
m

En
er
gy

(m
J)

1
(c) effect of m and k, where n = 256

Fig. 9. Energy of matrix multiplication on TX1 CPU with varying n, m, and k.

commonly 12, 32, 52, 72, or 112. The depth of a kernel is
usually the number of kernels in previous CONV layer and
hence also a multiple of 16, except the first CONV layer,
where the depth is the number of channels of the input
image and thus three. The spatial size of output feature
maps of a CNN m gradually reduces; it is commonly 1122,
562, 282, 142, or 72, though AlexNet has slightly different
ones, i.e., 552, 272 and 132. Based on these parameters
in CNNs, we carried out experiments on matmuls with
varying n, m, and k, corresponding to the common settings
of these parameters. The FC layer is currently used in CNNs
only as a classifier (e.g., in GoogleNet and ResNet) and thus
its compute time is negligible comparing to the forward
pass. Therefore, we do not consider the size of matrices for
FC layers in the modeling.

Simple linearity on CPU: Fig. 7 and 8 illustrate the com-
pute time of matmuls on TK1 CPU and TX1 CPU, respec-
tively. Fig. 9 depicts the energy of matmuls on TX1 CPU. The

settings of n, m, and k are: n = [32, 64, 96, 128, 256, 512],
m = [72, 142, 282, 562, 1122], and k = [64 × 12, 64 ×
32, 128× 32, 64× 52, 256× 32, 64× 72]. In each figure, we
fix one of three parameters and vary other two; data points
are shown as small circles; black circles are labelled with
coordinates to highlight the setting of varying parameters.

From Fig. 7a, 7b, and 7c, it is observed that the compute
time of matmuls on TK1 CPU scales linearly with n, m,
and k. The linearity can also observed on TX1 CPU for the
compute time as depicted in Fig. 8a, 8b, and 8c, and for
energy as illustrated in Fig. 9a, 9b, and 9c. Thus, we can
easily obtain linear models per CPU device, which predict
the compute time and energy of matmuls, given the matrix
sizes.

Complex linearity on GPU: Fig. 10 and 11 illustrate
the compute time of matmuls with varying setting of n,
m, and k on TK1 GPU and TX1 GPU, respectively, and
Fig. 12 depicts the energy of matmuls on TX1 GPU. The
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Fig. 10. Compute time of matrix multiplication on TK1 GPU with varying n, m, and k.
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Fig. 11. Compute time of matrix multiplication on TX1 GPU with varying n, m, and k.
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Fig. 12. Energy of matrix multiplication on TX1 GPU with varying n, m, and k.

compute time and energy of matmuls on GPUs exhibits
more complex relations with n, m, and k.

Fig. 10a mainly depicts the effect of n, which is bipartite.
For all settings of m, the compute time has a monotonic
relationship with n from n = 32 to 128, except n = 96 that
incurs even longer compute time than n = 128, while, from
n = 128 to 512, the compute time exhibits a perfect linear
relationship with n. Similar trend is also found on TX1 GPU
for both the compute time and energy as shown in Fig. 11a
and 12a, where the compute time and energy of n = 96
is equivalent to that of n = 128. Although TX1 GPU has
more CUDA cores (256 compare to 192 cores in TK1 GPU)
and generally computes faster than TK1 GPU on matmuls, it
also has this special value of n. This characteristic of GPUs
should be related to the scheme that determines how the
CUDA cores compute a matmul in parallel, not just the
number of CUDA cores in a GPU. Since cuBLAS is not an
open-source library, it is hard to verify these explanations or
trace the exact reason behind that. However, it is indicated

[2] that matmuls work best if n and m are multiples of 128
on Maxwell architecture (TX1 GPU) and if n is multiple
of 256 and m multiple of 192 on Kepler architecture (TK1
GPU). This may explain why it behaves differently when n
is small.

For given values of n and m, the compute time linearly
increases with k on both TK1 GPU and TX1 GPU as depicted
in Fig. 10b and 11b, same with energy on TX1 GPU as
illustrated in Fig. 12b. On the other hand, they reveal again
that n = 96 incurs longer compute time than n = 128 for
all the values of k on TK1 GPU and has equivalent compute
time and energy with n = 128 on TX1 GPU.

While the compute time increases with m on TK1 GPU
as depicted in Fig. 10c, the effect of m is also bipartite. The
compute time has two separate linear relationships with k
(different coefficients), e.g., from 72 to 562 and from 562

to 1122, as highlighted by different regions in Fig. 10c. In
each such region, the compute time on different values of k
linearly scales with m at mostly the same coefficient.
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The effect of m on the compute time and energy on
TX1 GPU is also bipartite as illustrated in Fig. 11c and 12c,
separated by m = 142. The compute time and energy in
region between m = 72 and 142 may have different linear
relations with m for different k. However, beyond m = 142,
both the compute time and energy linearly scale with m at
mostly the same coefficient for a given k.

The dichotomy of the performance on both TK1 GPU
and TX1 GPU should be related to cuBLAS. cuBLAS may
adopt different schemes based on the matrix sizes and the
number of CUDA cores to assign the workload to the cores.
The transition from one to another can be different on TK1
GPU and TX1 GPU, mainly because they have different
number of CUDA cores.

Based on the characteristics discussed above, we are able
to model the compute time and energy of matmuls on a
specific GPU, though we need more data points than that
on a CPU.

5.3 Accuracy
Based on the measurement, profiling, and modeling of
CNNs on mobile devices, we built the modeling tool, Augur,
that estimates the compute time, memory, and energy usage
for any given CNN. Augur first parses the descriptor of a
CNN. Based the type and setting of each layer, it calculates
the minimal memory needed to perform the computation
of the CNN. The memory includes data, parameters, and
workspace. Then, Augur extracts the matmul from the
computation of the CNN. Based on the profiling of matrix
multiplication on TK1 and TX1, i.e., the linear fits obtained
from Fig. 7 and 10 for TK1, and Fig. 8, Fig. 9, 11, and 12
for TX1, Augur calculates the compute time (also energy for
TX1) for individual matmuls and then uses their summation
as the estimate of the compute time (also energy for TX1) of
the CNN.

To verify the accuracy of Augur, we model two CNNs
that Augur has not profiled before (NIN [28] and VGG19M3)
and compare the estimates to the measured memory usage,
compute time and energy using Caffe.

Fig. 13 depicts the memory usage of NIN and VGG19M
on different processing units. The estimate of memory usage
is always less than the actual usage, because the estimate
does not take into account the memory usage of Caffe
itself, which is framework-dependent. However, it is easy
to incorporate that if a specific framework is targeted to
perform the computation of CNNs. Note that the estimate of
Augur is accurate on the memory usage of data, parameters,
and workspace as discussed in Section 4.2.

Fig. 14 and 15 evaluate the accuracy of Augur’s compute
time estimation of NIN and VGG19M, respectively. From
Fig. 14 and 15, we observe that the estimate based on only
matmuls can approximate the compute time of NIN and
VGG19M on both CPUs and GPUs, with more than 70%
accuracy for all the cases. Since matmuls generally take a
larger proportion of the compute time on CPUs than on
GPUs, the estimate on CPUs (up to 95%) is closer to the
actual compute time than on GPUs (up to 78%). Moreover, a

3. VGG19M is a modified version of VGGNet with more CONV
layers. The FC layers in the original VGGNet are replaced by a CONV
layer and a POOL layer to reduce memory usage.
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Fig. 13. Memory estimate of NIN and VGG19M.
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Fig. 16. Energy estimate of VGG19M and NIN on TX1.

more powerful processing unit can perform matmuls faster,
but the speed-up is not the same across all operations.
Therefore, the matmul of a CNN takes a smaller proportion
of the compute time on a more powerful processing unit.
This explains why the estimate on TK1 CPU (TK1 GPU) is
more accurate than TX1 CPU (TK1 GPU) for the same CNN.

Fig. 16 demonstrates the accuracy of Augur on the en-
ergy consumption of NIN and VGG19M on TX1. On TX1
CPU, the extent that the estimated energy is close to the
measured energy matches that of the compute time; the
estimate of compute time and energy is all about 70% for
both NIN and VGG19M on TX1 CPU. However, on TX1
GPU, the estimate of energy is closer to the actual energy
usage than that of compute time. That is, 87.97% and 91.60%,
respectively, for NIN and VGG19M on energy, and 70.75%
and 72.15% on compute time. As discussed in Section 5.1,
the throughput and power of GPU is usually higher on the
matmuls of a CNN than during a forward pass. Therefore,
the estimate of energy tends to be more accurate than that
of compute time.

Additionally, we investigate the accuracy of Augur on
SqueezeNet and MobileNet on TX1. Fig. 17 and Fig. 18,
respectively, depict Augur’s estimate on compute time and
energy of SqueezeNet and MobileNet. Augur’s estimation
of SqueezeNet is less accurate than NIN and VGG19M on
TX1 CPU and GPU. The main reason is that POOL and
ReLU layers (non-matmul operations) of SqueezeNet take
about 1/3 of compute time on TX1 as we found layerwise
forward pass, which makes the matmul-based estimation
less accurate. The estimate of MobileNet on TX1 CPU is
similar with SqueezeNet, because MobileNet contains many
Scale layers which run slow on TX1 CPU. However, these



13

CPU time CPU energy GPU time GPU energy

47.44%
50.47%

43.65%
66.96%

72.2
325

7.9
75152.2

643.9

18.1
112

Estimate Forward Pass

1
Fig. 17. Estimate of SqueezeNet on TX1.
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Fig. 18. Estimate of MobileNet on TX1.

layers run very fast on TX1 GPU and thus the estimation on
TX1 GPU is much more accurate, about 90%.

In summary, Augur can estimate how efficiently a CNN
can be run on mobile devices before any deployment. It can
also help the design of CNNs for resource-constrained mo-
bile devices. When designing a CNN model using Augur,
designers can estimate the memory usage, compute time,
and energy without implementation and deployment and
tune the model to satisfy their specific needs.

6 DISCUSSION

Augur can be extended to support additional mobile plat-
forms by simply profiling matrix multiplication operations
on them. Matrix multiplications of a CNN take most com-
putation (more than 90% of FLOPs from Table 2, 3, 4, and
5), which commonly takes a dominant proportion of the
compute time and energy. Thus, matrix multiplication is
currently exploited by Augur to estimate the compute time
and energy of a CNN. To obtain a more precise estimate, ad-
ditional factors need to be taken into consideration, e.g., non-
matmul operations (scale, pooling, etc), memory operations
(memcpy, im2col, col2im, etc.), convolution types (depth-
wise or channel shuffle), and CNN architectures (stacked or
branched). Augur will be enhanced with these features and
this will be our future work.

Moreover, we observe that a framework customized for
running CNNs on mobile platforms is highly desired. The
framework should be optimized for performing the test
phase of CNNs and tailored for the characteristics of mobile
platforms, e.g., the unified memory architecture.

On CPUs and GPUs with/without frequency scaling,
matrix multiplication can be used to estimate the perfor-
mance and resource usage of the computation of CNNs on
mobile devices (refer to the early version of this work [29]
for the case with frequency scaling), and matrix multiplica-
tion can be modeled based on the matrix sizes. However,
on TK1 and TX1 GPUs, the compute time can be greatly
accelerated when the frequency is fixed at the peak. For
example, the compute time of a forward pass of GoogleNet
on TX1 GPU is 32ms, while it is 143ms on TX1 GPU with
frequency scaling as in [29].

Although fixing the frequency of mobile GPUs at the
peak consumes more energy, it may be an option to improve
the performance (compute time) of CNNs when the resource
usage (energy) is not a major concern. For example, the
performance of GoogleNet can be improved for real-time

processing on 30fps live videos. On the other hand, the
frequency can also be adjusted to reduce the energy cost by
sacrificing the performance when energy is a major concern.
How to tradeoff between performance and resource usage
of CNNs on mobile devices will also be our future work.

7 CONCLUSION

In this paper, we aim to model the resource requirements
of CNNs on mobile devices in terms of memory usage,
compute time, and energy. By deploying several popular
CNNs on mobile CPUs and GPUs, we measured and an-
alyzed the performance and resource usage at a layerwise
granularity. Our findings pointed out the potential ways of
optimizing the performance of CNNs on mobile devices. As
the computation of a CNN is mainly governed by matrix
multiplications, we profiled and modeled matrix multipli-
cations on mobile platforms. Based on the measurement,
profiling, and modeling, we built Augur that can estimates
the compute time, memory, and energy of the CNN so as
to give insights on whether and how efficiently the CNN
can be run on a mobile platform without implementation
and deployment. Therefore, it can help the design of CNNs
for resource-constrained mobile devices. When designing a
CNN using Augur, designers can acknowledge the perfor-
mance and resource usage and tune the model to satisfy
their specific needs.
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