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Asynchronous Reinforcement Learning Framework
and Knowledge Transfer for Net Order Exploration

in Detailed Routing
Yibo Lin Member, IEEE, Tong Qu, Zongqing Lu, Yajuan Su, Yayi Wei

Abstract—The net orders in detailed routing are crucial to
routing closure, especially in most modern routers following
the sequential routing manner with the rip-up and reroute
scheme. In advanced technology nodes, detailed routing has to
deal with complicated design rules and large problem sizes,
making its performance more sensitive to the order of nets to
be routed. In literature, the net orders are mostly determined
by simple heuristic rules tuned for specific benchmarks. In
this work, we propose an asynchronous reinforcement learning
(RL) framework to automatically search for optimal ordering
strategies and a transfer learning (TL) algorithm to improve
performance. By asynchronous querying, the router, pre-training
the RL agents, and finetuning with the TL algorithm, we can
generate high-performance routing sequences to achieve a 26%
reduction in the DRC violations and a 1.2% reduction in the
total costs compared with the state-of-the-art detailed router.

Index Terms—Physical design, detailed routing, reinforcement
learning, transfer learning, policy distillation

I. INTRODUCTION

Routing is a critical and time-consuming step in physical
design [1]. Its solution impacts timing, power, and yield [2].
Routing is usually divided into global routing and detailed
routing, with the former planning the rough routing regions
and the latter finishing the actual interconnections [3]. Unlike
global routing, detailed routing needs to handle plenty of
design rules on a large grid graph. With feature sizes scaling
down with the technology nodes, the routing grids become
increasingly denser, leading to more complicated design rules
from manufacturing, such as parallel-run spacing, end-of-line
spacing, corner-to-corner spacing, and minimum area [4], [5].
Meanwhile, the grid graph for detailed routing is much larger
than that of global routing, indicating larger solution space. As
a result, detailed routing is becoming the most time-consuming
step in advanced technology nodes [4].

While routing has been studied for several decades with
many fundamental algorithms proposed, e.g., Lee’s algorithm,
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A* search, negotiation-based rip-up and reroute scheme, etc.,
most of the attention has been paid to global routing for a long
time [3], [6], [7]. In the past few years, with advanced tech-
nology nodes coming to the stage, the importance of detailed
routing has been realized. Various aspects of detailed routing
have been investigated. For example, pin access issues have
been discussed in [8]–[10]. Ahrens et al. explored specific data
structures for efficient detailed routing [11]. Manufacturing
constraints have also been explored in [12]–[14], such as
lithography-friendly routing algorithms.

In recent ISPD contests [4], [5], detailed routing has been
raised as a fundamental challenge in the backend design
with practical benchmarks and realistic design rules. The
contests largely stimulate the researches in detailed routing
and several high-performance and robust routers have been
proposed [15]–[19]. Sun et al. [20] proposed a valid pin access
pattern generalization with a via-aware track assignment to
minimize the overlaps between the wire segments. TritonRoute
[15] adopted integer linear programming (ILP) for parallel
intra-layer routing. DRAPS [18] developed an A*-interval-
based path search algorithm to handle complicated design
rules. Dr.CU [16], [17], [21] proposed an optimal correct-
by-construction path search algorithm and a two-level sparse
data structure for runtime and memory efficiency. RDTA [19]
developed an analytical approach to solve the track assignment
problem following the global routing guides. Attention router
explored reinforcement learning to solve the analog routing
problem at a small scale [22].

Among the aforementioned detailed routers, most of them
substantially follow the sequential routing strategy with the
negotiation-based rip-up and reroute scheme [16]–[18], [20].
The parallelism is usually obtained by routing a batch of nets
far away enough from each other simultaneously. This means
the routing order of nets is critical to the performance of the
algorithm. Currently, the net ordering strategy is usually de-
termined by simple heuristics. For instance, some net ordering
indicators are listed here: 1) the number of pins in a net; 2) the
number of DRC violations caused by a net [23]; 3) the region
size covered by a net [17]; 4) the distance from a certain point
[24]. In addition, the net order may change according to the
current routing status and historical penalties during the rip-
up and reroute stage [3]. The performance of these ordering
strategies may vary from design to design and from router
to router as well. Therefore, a generic way to search for a
good ordering strategy is desired to achieve high-performance
routing.
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To find a good ordering strategy, in this work, we formulate
the strategy search problem into a reinforcement learning
(RL) task to automatically learn from the designs. The major
contributions can be summarized as follows.
• We develop an asynchronous reinforcement learning

framework to learn the ordering strategy in sequential
detailed routing. By developing a customized neural
network architecture, we can apply the learned model to
different designs.

• We propose a transfer learning algorithm that can adapt
the pre-trained policy to target designs by finetuning
small, clipped regions for better performance.

• Experimental results on ISPD 2018 & 2019 contest
benchmarks [4], [5] demonstrate that the ordering strategy
obtained from our framework generalizes well. Compared
with the state-of-the-art detailed router Dr.CU 2.0 [17],
the DRC violations and the total costs are reduced by
14 % and 0.7 %, respectively. With transfer learninng, we
can reduce the DRC violations and the total costs by 26 %
and 1.2 %, respectively.

The rest of this paper is organized as follows. Section
II explains the background of routing, reinforcement learn-
ing, transfer learning, and problem formulation. Section III
presents the RL framework details. Section IV explains the
transfer learning algorithm. Section V reports the experimental
results on ISPD contest benchmarks. Finally, Section VI
concludes the paper.

II. PRELIMINARIES

In this section, we introduce the background on VLSI
routing, reinforcement learning, and problem formulation.

A. Design Rules

More design rules are introduced in the advanced technol-
ogy nodes. Meanwhile, three fundamental and representative
design rules need to be considered [4]. (1) Short: a via or
wire segment of a net should not overlap with any object
of another net. (2) Spacing: the spacing between two objects
should satisfy the minimum distances. There are several dif-
ferent types of such requirements, e.g., end-of-line spacing,
parallel-run spacing, and cut spacing. (3) Minimum area: a
metal polygon should have an area larger than the minimum
threshold. Typical objectives for routing are to minimize the
total wirelength and the DRC violations.

B. Sequential Detailed Router

In year 2018 and 2019, the ISPD contest was organized on
detailed routing [4], [5]. Dr.CU [17] won the first place in the
ISPD 2019 contest and is open source. In this work, we adopt
Dr.CU as the target detailed routing framework for studying,
while the methodology can work on other routers as well.
Fig. 2 illustrates its routing flow, which is a typical procedure
for most sequential routing algorithms as well. Given a placed
netlist, routing guides, routing tracks, and design rules, it first
assigns access points for each pin. Then it starts the rip-up and
reroute (RRR) iterations to accomplish the routing. During the
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Fig. 1: Distribution of solution quality with random net or-
dering (300 iterations). The relative standard deviation of the
number of DRC violations, the number of vias, and wirelength
is 1.95 %, 0.04 %, and 0.008 %. Their ranges are 70.00, 845.00,
and 4996.31, respectively.

RRR iterations, if the router encounters congestion or DRC
violations when trying to route a net, it rips up the net and the
conflicted nets, leaving them for the next iteration to reroute.
With enough iterations, the router can achieve convergence.
Finally, it performs a post-routing refinement stage to reduce
DRC violations. It needs to be noted that within each RRR
iteration, Dr.CU also exploits parallelism between nets far
away from each other, such that there will be no interaction
when simultaneously solving the routing problem of each net.
This does not change the sequential nature of the algorithm,
i.e., routing in a net-by-net manner, as it does not determine
the routing of different nets at the same time. The solution
quality of sequential routers like Dr.CU is highly correlated to
the order of nets to be routed. Fig. 1 shows the distribution of
solution quality with random net ordering routed by Dr.CU.
Although the wirelength does not change much, the order
affects both via count and the number of DRC violations.
Thus, the ordering strategy needs to be carefully designed for
high-quality routing across various benchmarks.

Dr.CU sorts nets by the routing region sizes (half-perimeter
of the bounding box) of each net in descent order. In other
words, nets covering large routing regions are routed first.
However, we observe that the routing region sizes of different
nets can be very similar, leading to random orders between
these nets, and eventually causing high variations in the final
violations. For example, Fig. 3 shows that 5293 nets have the
same routing region size, accounting for 14.4 % of the total
number of nets in benchmark ispd18_test3. Therefore,
there is a potential to improve the routing performance by
developing an ordering strategy considering more features,
which will be explained in detail in Section III-A and Table I.

C. Reinforcement Learning

Machine Learning (ML) is an effective practical tool to
optimize a design in the absence of suitable models for opti-
mization. One of the main obstacles in using supervised ML-
based techniques for solving routing problems, especially the
net ordering problems, is the lack of golden labeled datasets to
learn. One way to overcome this problem is to use a reinforce-
ment learning approach. RL has been successfully applied in
many applications. A typical RL problem can be considered as
training an agent to interact with an environment. As illustrated
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Fig. 2: Routing Flow.
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Fig. 3: Distribution of the net routing region sizes in
ispd18_test3.

in Fig. 4, at each step t, the agent g observes a state st ∈ S,
takes an action at ∈ A based on st, receives a reward rt ∈ R,
and then the state stochastically transits to the next state st+1.
The objective is to learn a policy π(at|st) that maximizes the
expected cumulative reward R =

∑∞
i=0 γ

irt+i, starting from
any state s, where scalar γ ∈ (0, 1] is a discount rate.

In this work, we define the environment as the router, and
the design to be routed, the agent as a net order planner that
ranks the nets based on the features (state). The net ordering
result is the action, and the reward is positively related to the
solution quality, e.g., total wirelength and DRC violations.

D. Problem Formulation

We define the net ordering problem in detailed routing as
follows.

Reward Environment Agent

step step
State 

Action 

Fig. 4: Environment and agent system of reinforcement learn-
ing.

TABLE I: Features of Each Net.

Feature Dimension Description

Size 1 The size of the routing region (half-perimeter
of bounding box).

Degree 1 Number of nets with conflicts in its routing
region.

Count 1 The number of times it has been
routed/rerouted.

Cost 1 The weighted sum of violations on it.
Via 1 Number of via on it.
WL 1 Wirelength.
LA 16 Layer assignment.

Problem 1 (Net ordering). Given a set of nets N , train a
net ordering policy that can generate a ranking score si for
each net ni ∈ N used by a sequential detailed router. The
following metrics should be optimized simultaneously: (1) the
total wirelength of all nets, (2) the number of the total used
vias, (3) the number of DRC violations.

We further define the transfer learning problem to adapt the
net ordering policy to a target design.

Problem 2 (Transfer learning). Given a target design with a
set of nets N and a pre-trained policy for net ordering, finetune
the net ordering policy with small clipped regions of the target
design. The performance metrics, as mentioned earlier, after
routing the target design can be optimized.

III. REINFORCEMENT LEARNING FRAMEWORK

In this section, we first define the state space, action space,
reward, and the basic RL setup. Then we explain the dedicated
RL techniques for our routing problem.

A. Basic RL Setup

We define the state space, action space, and reward as
follows:

State space S: A state s is the collective representation of
features for all nets. Table I summarizes the seven features
for each net. The first feature is the size of its routing region.
The second feature is its degree, which denotes the number of
nets whose routing region overlaps with it. The third feature
is the number of times routed/rerouted so far. The remaining
four features are its costs information, including the violations
cost, wirelength, number of vias, and metal layers assignment.

Action space A: An action a is a real number vector. Each
number is defined as an ordering score of a net.

Reward R: Given the ordering scores (action a), the
environment (router) will provide its feedback (i.e. evaluation
metrics). The agent receives a reward according to the envi-
ronment’s feedback. The reward r is defined as:

r = −c+ co (1)

Where c and co are the total cost of all nets achieved by the
agent’s action a and Dr.CU’s default strategy. The total cost c
is defined as:

c =
4∑
i=1

wixi (2)
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Fig. 5: The A3C Framework with asynchronous parallel agents
and global network.

Where xi|i ∈ {1, 2, 3, 4} are the evaluation metrics used in
the ISPD Contests, including short violation, spacing violation,
number of vias, and wire length, wi|i ∈ {1, 2, 3, 4} are the
weights of the above metrics. The objective of the agent is to
learn a policy to maximize the reward.

B. Asynchronous Advantage Actor-Critic (A3C) Algorithm

Expensive query to the environment is a typical challenge
in RL, leading to slow convergence and unaffordable training
time. We adopt an A3C method [25] with multiple actor-
critic (AC) agents running in parallel. This asynchronous
reinforcement learning framework can be defined as follow.

Definition 1. Given m independent environments (designs),
the corresponding m agents are trained in parallel to get a
policy π that maximizes the rewards.

As shown in Fig. 5, each agent of A3C has a local copy
of the policy and value networks. It performs actions in its
environment to explore the solution space with a different pol-
icy. Different agents update the global network asynchronously
during the training. A3C maintains a policy π (at|st; θ) and
an estimate of the value function V (st; θv), where θ and θv
are the global shared parameter vector. Algorithm 1 illustrates
how each actor is updated. After initialization, each agent takes
a copy of the global shared network, with parameters θ′ and
θ′v (line 5), and then runs the policy for tmax steps or until
a terminal state is reached. Finally, the agent computes the
gradients in its process (line 17-18) and then updates the global
share network asynchronously.

C. Network Architecture

We need two models in the A3C framework, a policy
network and a value network. The policy network takes the
state s and outputs two arrays (µ, σ2) that represent a normal
distribution p ∼ N(µ, σ2) over the actions. We pick the
action by sampling from this normal distribution p. We denote
π(a|s) as the probability of the sampled action a given state
s. The value network outputs the value function V (s) (the
expected return in rewards for state s and action a), which is
used to determine how advantageous it is in a particular state.
Intuitively, the policy network tells us the ordering scores of
the nets and the value network evaluates the scores in the sense
of future rewards.

Fig. 6 plots the network architecture of the two models. We
design the models in a special way so that the policy model
can be used across different designs with different numbers of

Algorithm 1 Update each A3C actor [25]

Require: Global shared parameter vectors θ, and θv
1: Initialize thread step counter t← 1
2: Define thread-specific copy of weights θ′, θ′v
3: for T = 1, .., Tmax do
4: dθ ← 0 and dθv ← 0 . Reset gradients
5: θ′ = θ and θ′v = θv
6: Get state st
7: tstart = t
8: repeat
9: Find action at according to policy π

10: Sort nets according action at
11: Receive reward rt and new state st+1 from router
12: t← t+ 1
13: until terminal st or t− tstart == tmax

14: Return R =

{
0 for terminal st
V (st, θ

′
v) for non-terminal st

15: for i = t− 1, ..., tstart do
16: R← ri + γR
17: dθ ← dθ +∇θ′ log π (ai|si; θ′) (R− V (si; θ

′
v))

18: dθv ← dθv − ∂ (R− V (si; θ
′
v))

2
/∂θ′v

19: end for
20: Perform asynchronous update of θ using dθ and of θv

using dθv
21: end for

nets. To decouple the network architecture from the number
of nets in design, we introduce a net-wise feature encoding
network that encodes the features of each net independently.
We then concatenate the encoded features for the policy and
value networks. For example, given a design with E nets,
the encoder will encode the RE×22 input feature tensor into
an RE×64 tensor. The policy network takes this tensor and
generates an array of ordering scores for all nets, i.e., RE×2
(mean and variance of the probability distribution for each
net). We then sample from a normal distribution for each net
to get its ordering score. In our implementation, µ is modeled
by a linear layer and σ2 by a softplus layer. The value network
flattens the feature tensor and feeds into a fully connected layer
with E × 64 hidden units to obtain a scalar at the output.

The major benefit of such a network architecture is that the
policy network can be shared across different designs, as we
essentially perform net-wise modeling with the ordering score
of each net dependent on its features only. While it is true that
using a more complicated model that correlates the features
of multiple nets may help to explore better policy, current
architecture still has enough expressive power to verify the
main idea of using RL in solving the net ordering problem.
We leave the exploration of complicated models in the future.
For example, we can determine the ranking score of a net by
multiple related nets. This requires the model to be able to
learn the correlation of features between multiple nets.

D. Mismatch Penalty

General RL framework initializes the neural networks in
a random manner, which may cause slow convergence in
our problem, especially when obtaining the reward from the
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Fig. 6: Network structure.

environment (i.e., running the router) is very time-consuming.
On the other hand, we do have the prior knowledge to this
problem that the default ordering strategy of using routing
region sizes in Dr.CU is a generally good policy compared
with a random one. Incorporating such knowledge has the
potential to speed up training. Hence, Equation (1) is modified
to:

r = −c+ co −
α

k

k∑
i=1

∆ai
2 (3)

Where ∆a is the difference between the predicted ordering
scores and the sizes of routing regions, α is a user-defined
parameter, and k is the number of nets to be routed. The
parameter α is positive only at the early training steps and
then set to zero. The detailed setup can be found in Section V.
Fig. 7 compares the learning speeds of the two reward function
defining methods. The results show that the method of adding
a mismatch penalty tends to learn faster. As we only apply
the mismatch penalty at the early stage of the training, it will
speed up the training, but not limit the exploration space to the
heuristic ordering strategy used in Dr.CU. In other words, the
agent is free to generate different orders from that in Dr.CU.

IV. TRANSFER LEARNING ALGORITHM

In this section, we first introduce the transfer learning algo-
rithm based on policy distillation. In the end, we summarize
the overall flow of our TL algorithm.

We assume a reasonably good policy is available. Our task
is to mine the knowledge from the pre-trained policy and adapt
to a target design to improve the performance.
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Fig. 7: Comparison of two reward functions. The curves
represent the moving average reward of the last 1000 episodes
(one episode includes four RRR iterations according to the
setting of Dr.CU). We train the agents for 15 000 episodes
and the maximum training time is within 24 hours. Mismatch
penalty enables faster reward increase.

A. Policy Distillation Algorithm

In the previous section, we aim at training a general RL
policy to solve the net ordering tasks of multiple designs,
which is essentially a multi-task learning problem. However,
it is not always easy to achieve good generality across a wide
range of designs. On designs with unique characteristics, a
generally good policy may not capture the unique design styles
and eventually fails to result in high solution quality. If we
can customize the policy for each design with low overhead,
there is an opportunity to improve the performance further. To
reduce the overhead of customization, we finetune the well-
trained policy from the previous section using a small region
clipped from the target design instead of training from scratch.
In this way, we can minimize the transfer learning overhead by
repeatedly routing the target design when the agents interact
with the environment. The key for transfer learning is to
effectively transfer the knowledge from the source domain
(i.e., the pre-trained policy) to the target domain (i.e., for
routing the target design).

Policy distillation is a transfer learning approach that
distills the knowledge from a teacher network to a student
network. Typical RL policy distillation frameworks transfer the
teacher policy in a supervised learning paradigm. Specifically,
a student policy is learned by minimizing the Kullback-Leibler
(KL) divergence of actions between the teacher policy πS and
student policy πT [26]. As explained in Section III-C, one
action a is sampled from the normal distribution p from the
policy network, so the policy distillation can be completed
by optimizing the per-time-step KL divergence between the
distributions of the teacher and the student over actions:

LKL(D, θS) =
∑
t=1

pTt log
pTt
pSt

, (4)

where pTt is the normal distribution from the teacher network
at step t, pSt is the distribution from the student network of this
step, θS denotes the parameters of the student policy network,
and D is a set of distributions from the teacher network.

B. Policy Transfer Flow

As our network structure in Section III-C is decoupled
with the number of nets, different designs’ action spaces can
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Fig. 8: Distillation procedure.

be considered as the same dimensions. Hence, the student
network can directly mimic the action pattern of the teacher
network.

Based on the above observation, we propose a policy
distillation flow to transfer knowledge between designs. As
illustrated in Fig. 8, the distribution p of the teacher net-
work from a source design (environment) ET is used as our
supervision to update the student network of target design
(environment) ES . This procedure is performed by minimizing
Equation (4) over student policy network parameters θS for
ES , θS including the net feature encoder, value layer, and
policy layer. The input to both the teacher and the student
networks is the state s of environment ES . It means that
we want to transfer the expertise from the environment ET

towards the current state. Symbol D is a set of distributions
from the teacher network in one batch.

Suppose we have already had a reasonably good policy for
most designs. We want to use the knowledge from the policy
to improve the performance of a particular design further.
In the proposed transfer learning approach, we first select a
clip from the target design because training on a complete
design is not affordable, mainly when the design contains
tens of thousands of nets. Given a representative clip, we
observe that training can significantly reduce the training time
without much performance loss. Then, we train the student
network by interacting with the clip (environment) ES for a
certain amount of steps, e.g., 1000 steps in the experiments.
Afterward, we start performing policy distillation.

C. Overall Flow

Fig. 9 shows the overall flow. The A3C algorithm is first
used to train on multiple designs to obtain the pre-trained
model MT . For each input design di to be routed, we select
a clip li from it. The policy distillation is performed to guide
the model MS

i , which is trained on the clip li. After a certain
period of training, the best model for clip li is selected. Finally,
the input design di is routed under the guidance of model MS

i .
The overall routing flow is summarized in Algorithm 2,

given that the RL model MS
i to determine the net ordering.

We first extract features for each net to be routed within each
routing iteration and then obtain the ordering scores using the
RL policy (line 9). After that, we leverage Dr.CU to finish each
RRR iteration (line 10-19). More specifically, we schedule all
batches at the beginning of an RRR iteration (line 10) by
sorting the nets according to the scores and dividing them
into batches. Nets within a batch that do not conflict with each
other can be routed parallel to reduce the runtime [16]. If the

A3CTrainning  
Dataset Model 

Clip Policy
Distillation Model A3C

Design Routing Solution

Fig. 9: Overall flow.

Algorithm 2 Overall routing flow using RL model

Require: A set of nets N in design ti, RL model MS
i , and

various design rules for a router
Ensure: Routing solution with optimized solution quality

1: Define M as the maximum number of iterations of RRR.
2: Define S as the set of nets’ ordering scores.
3: i← 0
4: while i < M,N 6= ∅ do
5: i← i+ 1
6: for all net n ∈ N do
7: Extract net features fn
8: end for
9: Use the RL policy π and features F to get the ordering

scores of all nets S
10: batch list B = Scheduler(N,S)
11: for all b ∈ B do
12: Run maze routing, via selection and post-routing

in multiple threads
13: end for
14: Calculate the total cost
15: for all n ∈ N do
16: if n meet constraints then
17: Pop n from N
18: else
19: Rip-up n
20: end if
21: end for
22: end while

RRR stopping criteria are not met, the iterations will continue
until the maximum number of iterations is reached. We keep
the same settings as Dr.CU except for the net ordering.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

We define our environment using the OpenAI Gym interface
with Dr.CU 2.0 [17] as the detailed router, and implement our
RL agent network in PyTorch. All the experiments ran on a
64-bit Linux machine with two 20-core Intel Xeon@2.1 GHz
CPUs and 64 GB RAM.

The latest design benchmarks available to academics are the
ISPD 2018 and ISPD 2019 Initial Detailed Routing Contests
[4], [5] benchmarks, which have 20 designs. We experiment on
those benchmarks. The detailed information of the benchmarks
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Algorithm 3 Clip Selection

1: Define HC and WC as the initial width and height of a
clip C, and NC as the step size.

2: while the number of nets in clip C is smaller than 500 do
3: Divide the benchmarks into clips with sizes of HC ×
WC

4: Choose the clip with the highest pin density as the
candidate clip C

5: Project pins outside the clip C to the boundary
6: WC ←WC +NC
7: HC ← HC +NC
8: end while
9: Add the clip C into the training dataset

is shown in Table II. We can see that benchmarks have quite
different problem sizes, and technology nodes (32/45/65 nm).

As the benchmarks are large, we select clips with suitable
scales and add them to the training dataset. The procedure
of clip selection is described in Algorithm 3. The idea is
to select a dense clip including around 500 nets because we
observe this is an affordable scale to invoke the router during
training repeatedly. We first divide a benchmark into fixed-
size clips (line 3) and then choose the densest one in terms of
pins (line 4). We then project the pins outside the clip to its
boundary (line 5). If the number of nets in the clip exceeds
500, we add it to the training dataset. Otherwise, we expand
the clip to include more nets and repeat the above steps.

B. Asynchronous Advantage Actor-Critic

In this subsection, we verify the effectiveness of the A3C
framework. We set the discount factor γ = 0.99, the coefficient
for the value loss β = 0.25, entropy cost η = 0.001, and
learning rate to 0.001. We also set α = 0.1 for the first 100
training episodes and reduce to 0 afterward. A standard non-
centered RMSProp is used as the gradient ascent optimizer.
The neural network weights are initialized randomly. We use
eight AC agents to train in parallel, and the maximum training
time is set to 24 hours (around 8000 episodes).

According to Dr.CU [17], the runtime of routing one of
these benchmarks varies from two minutes to five hours.
Ideally, it is expected to train and test a RL model on
one technology node only. However, considering that most
designs in Table II are in the 32 nm node, while the ones
in 45/65 nm nodes are either too small or large, we choose
a training dataset mixed with designs in 32 nm and 45 nm
nodes, and test on the remaining to validate the framework.
To balance the runtime overhead and universality of the
generated model, ISPD18_test3/5/6/7 are selected as
benchmarks in the training dataset and the remaining sixteen
as the test dataset. Due to ISPD18_test7’s large size,
we choose two clips from it containing 7 and 26 violations
to put in the training dataset. In conclusion, the training
dataset contains {two regions clipped from ISPD18_test7,
ISPD18_test3/5/6}. These training benchmarks have
moderate and diverse sizes that can keep reasonable training

TABLE II: Characteristics of ISPD 2018 & 2019 Contest
Benchmarks.

benchmarks #std #net
Die size
(mm2)

Tech. node
(nm)

IS
PD

18

test1 8879 3153 0.20 × 0.19 45
test2 35 913 36 834 0.65 × 0.57 45
test3 35 973 36 700 0.99 × 0.70 45
test4 72 094 72 401 0.89 × 0.61 32
test5 71 954 72 394 0.93 × 0.92 32
test6 107 919 107 701 0.86 × 0.53 32
test7 179 865 179 863 1.36 × 1.33 32
test8 191 987 179 863 1.36 × 1.33 32
test9 192 911 178 857 0.91 × 0.78 32
test10 290 386 182 000 0.91 × 0.87 32

IS
PD

19

test1 8879 3153 0.148 × 0.146 32
test2 72 094 72 410 0.873 × 0.589 32
test3 8283 8953 0.195 × 0.195 32
test4 146 442 151 612 1.604 × 1.554 65
test5 28 920 29 416 0.906 × 0.906 65
test6 179 881 179 863 1.358 × 1.325 32
test7 359 746 358 720 1.581 × 1.517 32
test8 539 611 537 577 1.803 × 1.708 32
test9 899 341 895 253 2.006 × 2.151 32
test10 899 404 895 253 2.006 × 2.151 32

time but also complicated enough to represent the real routing
challenges.

Table III and Table IV summarize the results of the training
and testing datasets. We compare the wirelength, number of
vias, DRC violations, total cost, and runtime between our
RL framework and Dr.CU [17]. The violation values here
are a summation of all the DRC violations mentioned in
Equation (1). In the training dataset, with similar wirelength
and number of vias, we can achieve 13% fewer DRC violations
compared with the default policy in Dr.CU. The total cost only
has small improvements. This is because the cost is dominated
by wirelength due to its large scale according to its definition
in the contests. The results on the training dataset indicate that
our RL framework and training techniques are able to learn
good policies from the benchmarks. We also observe around
6 % runtime overhead, which mostly comes from the feature
extraction and the system integration between the Python-
based RL agent and the C++-based Dr.CU implementation.
In the testing dataset, our policy can achieve an average of
14 % improvement in violations and 0.7 % in total cost without
degradation in wirelength and number of vias. The results
on the testing dataset demonstrate that the policy learnt from
the training dataset can generalize to unseen benchmarks and
achieve high-quality solutions on average.

One needs to mentioned that on large benchmarks like
ISPD19_test7-10 in 32 nm technology node, the RL
policy can reduce the violations by 40 % to 50 %, which is
rather promising. However, we observe that there are also
outliers like ISPD18_test4 and ISPD19_test4 where
the violations increase by 15 % and 46 %, respectively. The
results of all the remaining benchmarks are either improved
or within a comparable range. We speculate that the two
outliers contain special features not in our training dataset
or state space, causing unusual behaviors. ISPD19_test4
is in 65 nm technology node with 6 metal layers, while the
designs in the training dataset are in 45/32 nm technology
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nodes with 9 metal layers. These differences probably reduce
the generalization performance of the RL policy in these two
designs. At this point, we have obtained a model that can
perform well in most design, and further improvement will be
completed in transfer learning.

C. Transfer Learning via Policy Distillation

In this subsection, we design experiments to illustrate the
effectiveness of the policy distillation algorithm. We obtained
a generally good model in previous experiments, but there are
some outliers like ISPD18_test4 and ISPD19_test4.
This result indicates that the knowledge gained in the training
dataset has insufficient generalization capabilities. Therefore,
we transfer the knowledge from the pre-trained policy to
the student network for each design via policy distillation.
One challenge is that the routing of each design is time-
consuming in the testing dataset. As we mentioned before,
for each design di to be tested, we select a clip li from it for
interaction. The clip li must have sufficient representation. We
select a clip containing about 500 nets from the region with
the highest pin density such that the routing can be finished
within 1 minute by Dr.CU. Pin density is a straightforward
metric for clip selection. We leave the exploration of more
complicated clipping strategies to the future. In the following
experiments, we maintain consistent hyper-parameters of the
network structures across all designs.

The student agents are trained with the clip li only and
perform policy distillation after 1000 episodes. We set the
maximum time for the entire training to three hours (assume
the maximum time available for transfer learning, equivalently
around 3000 episodes). Finally, the model is evaluated with
the design di. Table IV shows the comparison of wirelength,
number of vias, number of DRC violations, and total costs
between Dr.CU, the RL algorithm [27], and the transfer
learning algorithm. By enabling transfer learning, we can
further reduce the average number of DRC violations by
12% and the average total cost by 0.5% compared with the
RL algorithm, while other metrics remain almost the same
as the RL algorithm. Note that these numbers are an extra
improvement from the RL algorithm. Compared with Dr.CU,
the TL algorithm can contribute to 26% reduction of DRC
violations and 1.2% reduction of total cost.

To further verify the performance of the model with addi-
tional training iterations, we also train the model for 100 K
episodes on ISPD19_test2 and ISPD19_test8, and
show the training curves in Fig. 10. As routing an entire design
to obtain the number of DRC violations is time-consuming, we
only sample every 1000 and 4000 episodes for these designs,
respectively. We can see that the performance of the TL curves
continues to improve and gradually saturates at 60 K to 100 K
episodes. We also plot the curves of training from scratch
using the RL algorithm as ‘RL-S’ in the figure. Compared with
the RL-S curve, the TL curve drops much faster, indicating
the effectiveness of the proposed transfer learning technique
compared with training from scratch. We also observe that
the #violation of the average TL and RL-S curves can go
much higher than that of the RL curve between 0 to 20 K
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Fig. 10: The performance with additional training iterations
on ISPD19_test2 and ISPD19_test8. The raw TL/RL-
S results are shown in light red/blue, and the average TL/RL-S
results are shown in the blue/green by taking an average of
25 data points around each point.

episodes. This is because the performance oscillates greatly
at the beginning of the training iterations, several extremely
poor points cause large average number of violations. With
the training continuing, the performance gradually converges
and becomes more stable.

In the previous section, we observe that the num-
bers of DRC violations for ISPD18_test2/4/10 and
ISPD19_test2/4/5/6 are larger than Dr.CU’s results.
With our transfer learning technique, ISPD18_test4 and
ISPD19_test2 can outperfrom Dr.CU, while the results
for ISPD18_test2/10 and ISPD19_test4/5/6 are
still not as good as Dr.CU, especially that the results of
ISPD18_test10 and ISPD19_test4/5/6 are far from
expected. One possible reason lies in insufficient training, and
the teacher network guides the student networks in the wrong
direction. To verify that, we continue the training iterations
of transfer learning on these designs and report the numbers
of DRC violations with the intermediate policies, as shown in
Fig. 11. Each model is trained for 100 K to 140 K episodes
(around 100 hours to 140 hours). Similar to that in Fig. 10,
we only sample every 500, 1000, and 2000 episodes for each
of the four designs mentioned above according to their sizes,
respectively. We compare the transfer learning curves with
the results of Dr.CU and the RL algorithm as well as the
results of training from scratch (‘RL-S’). Fig. 11 shows that
in the first 3000 episodes (about three hours), the model’s
performance improves slowly. When the training continues,
the performance of the models keeps improving, even though
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TABLE III: Experimental Results on the Training Dataset (Comparison between Dr.CU [17] and RL [27]).

Absolute Values

Wirelength (107) #via (106) #vio Cost (107) T (s)

Design Dr.CU RL Dr.CU RL Dr.CU RL Dr.CU RL Dr.CU RL

IS
PD

18

test3 0.894 0.894 0.318 0.318 361 342 0.529 0.528 172 189
test5 2.870 2.870 0.966 0.965 393 388 1.648 1.648 610 638
test6 3.700 3.701 1.481 1.481 95 63 2.151 2.150 756 793
test7 6.727 6.728 2.403 2.403 792 735 3.884 3.881 1466 1576

Relative Ratios

Wirelength #via #vio Cost T

Design Dr.CU RL Dr.CU RL Dr.CU RL Dr.CU RL Dr.CU RL

IS
PD

18

test3 1.000 1.000 1.000 1.000 1.000 0.947 1.000 0.998 1.000 1.099
test5 1.000 1.000 1.000 0.999 1.000 0.987 1.000 1.000 1.000 1.046
test6 1.000 1.000 1.000 1.000 1.000 0.663 1.000 1.000 1.000 1.049
test7 1.000 1.000 1.000 1.000 1.000 0.928 1.000 0.999 1.000 1.075

Min. 1.000 1.000 1.000 0.999 1.000 0.663 1.000 0.998 1.000 1.046
Max. 1.000 1.000 1.000 1.000 1.000 0.987 1.000 1.000 1.000 1.099

Geo. Mean 1.000 1.000 1.000 1.000 1.000 0.870 1.000 0.999 1.000 1.067

TABLE IV: Experimental Results on the Testing Dataset (Comparison between Dr.CU [17], RL [27], and TL).

Absolute Values

Wirelength (107) #via (106) #vio Cost (107) T (s)

Design Dr.CU RL TL Dr.CU RL TL Dr.CU RL TL Dr.CU RL TL Dr.CU RL TL

IS
PD

18

test1 0.05 0.05 0.05 0.03 0.03 0.03 1 0 0 0.03 0.03 0.03 9 10 10
test2 0.81 0.81 0.81 0.33 0.33 0.33 1 4 4 0.47 0.47 0.47 125 136 137
test4 2.70 2.70 2.70 0.73 0.73 0.73 507 584 487 1.52 1.52 1.52 696 745 727
test8 6.76 6.76 6.76 2.41 2.41 2.41 819 756 753 3.90 3.90 3.90 1474 1541 1548
test9 5.69 5.69 5.69 2.41 2.41 2.41 139 54 9 3.33 3.33 3.33 1196 1260 1240

test10 7.04 7.04 7.04 2.59 2.59 2.60 8271 9165 8915 4.45 4.50 4.49 2244 2373 2315

IS
PD

19

test1 0.07 0.07 0.07 0.04 0.04 0.04 1121 1110 1045 0.10 0.10 0.09 102 109 106
test2 2.56 2.56 2.56 0.79 0.79 0.79 4262 4333 4253 1.65 1.66 1.65 1499 1610 1625
test3 0.09 0.09 0.09 0.06 0.07 0.07 167 96 77 0.07 0.06 0.06 52 54 54
test4 3.13 3.13 3.13 1.03 1.03 1.03 5455 7968 7949 2.04 2.17 2.17 1548 1653 1665
test5 0.49 0.49 0.49 0.15 0.15 0.15 408 426 436 0.30 0.30 0.30 154 163 165
test6 6.78 6.78 6.78 1.99 1.99 1.98 8944 9474 9363 4.23 4.26 4.25 3158 3340 3374
test7 12.72 12.72 12.71 4.81 4.81 4.80 11649 7798 7577 7.90 7.71 7.69 7812 8338 8379
test8 19.56 19.56 19.55 7.33 7.33 7.32 16291 9128 8676 12.06 11.70 11.67 11089 11870 11855
test9 29.73 29.73 29.72 12.19 12.20 12.17 34632 16745 16015 19.03 18.14 18.10 15225 15967 15681

test10 29.46 29.45 29.45 12.48 12.49 12.49 32743 18150 17522 18.86 18.13 18.10 16156 17108 17335

Relative Ratios

Wirelength #via #vio Cost T

Design Dr.CU RL TL Dr.CU RL TL Dr.CU RL TL Dr.CU RL TL Dr.CU RL TL

IS
PD

18

test1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 1.000 1.000 1.000 1.000 1.111 1.111
test2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 4.000 4.000 1.000 1.000 1.000 1.000 1.088 1.096
test4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.152 0.961 1.000 1.000 1.000 1.000 1.070 1.045
test8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.923 0.919 1.000 1.000 1.000 1.000 1.045 1.050
test9 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.388 0.065 1.000 1.000 1.000 1.000 1.054 1.037
test10 1.000 1.000 1.000 1.000 1.000 1.004 1.000 1.108 1.078 1.000 1.011 1.009 1.000 1.057 1.032

IS
PD

19

test1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.990 0.932 1.000 1.000 0.900 1.000 1.069 1.039
test2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.017 0.998 1.000 1.006 1.000 1.000 1.074 1.084
test3 1.000 1.000 1.000 1.000 1.167 1.167 1.000 0.575 0.461 1.000 0.857 0.857 1.000 1.038 1.038
test4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.461 1.457 1.000 1.064 1.064 1.000 1.068 1.076
test5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.044 1.069 1.000 1.000 1.000 1.000 1.058 1.071
test6 1.000 1.000 1.000 1.000 1.000 0.995 1.000 1.059 1.047 1.000 1.007 1.005 1.000 1.058 1.068
test7 1.000 1.000 0.999 1.000 1.000 0.998 1.000 0.669 0.650 1.000 0.976 0.973 1.000 1.067 1.073
test8 1.000 1.000 0.999 1.000 1.000 0.999 1.000 0.560 0.533 1.000 0.970 0.968 1.000 1.070 1.069
test9 1.000 1.000 1.000 1.000 1.001 0.998 1.000 0.484 0.462 1.000 0.953 0.951 1.000 1.049 1.030
test10 1.000 1.000 1.000 1.000 1.001 1.001 1.000 0.554 0.535 1.000 0.961 0.960 1.000 1.059 1.073

Min. 1.000 1.000 0.999 1.000 1.000 0.995 1.000 0.000 0.000 1.000 0.857 0.857 1.000 1.038 1.030
Max. 1.000 1.000 1.000 1.000 1.167 1.167 1.000 4.000 4.000 1.000 1.064 1.064 1.000 1.111 1.111

Geo. Mean 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.856 0.734 1.000 0.993 0.988 1.000 1.065 1.062
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Fig. 11: The performance of policy distillation with additional training iterations on outlier designs, where ‘RL-S’ represents
the training results from scratch. The raw TL/RL-S results are shown in light red/blue, and the average TL/RL-S results are
shown in the blue/green by taking an average of 25 data points around each point. We also zoom on the first ∼3000 episodes
to show the results at the beginning of the additional training iterations.

with some turbulence. At around 80 K to 100 K episodes,
the performance of the TL algorithm approaches Dr.CU and
eventually outperforms the latter with extra iterations. The
best results in Fig. 11 can achieve approximately 4%, 17%,
6%, and 6% fewer DRC violations compared to Dr.CU,
respectively. This experiment explains the reasons for the
outliers in Table IV, and they can be resolved by continuing the
policy distillation training until convergence. We also observe
that the transfer learning technique eventually leads to better
convergence than training from scratch on these designs.

VI. CONCLUSION

In this paper, we propose an asynchronous reinforcement
learning framework to search for high-quality net ordering
strategies in detailed routing automatically. We propose highly
extensible agent models and mismatch penalty to enable effi-
cient exploration of good policies. Experiments on ISPD 2018
& 2019 contest benchmarks demonstrate that our framework
is able to learn an ordering policy that reduces the number
of violations by 14 % on unseen benchmarks, compared with
the state-of-the-art detailed router. We also propose a trans-
fer learning algorithm to further improve the agent models’
performance based on policy distillation. The models after
transfer learning can reduce the number of violations by 26 %
on the testing designs. This study can enlighten techniques to
automatically search for better routing solutions during design

space exploration with extra computing resources or explore
effective heuristics for routing.

The future work includes improving the agent network
architecture to consider the correlation between multiple nets
and expanding the state space to consider more features. We
also plan to explore techniques [28] to handle the staleness
between global and local agents in the asynchronous reinforce-
ment learning framework.
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