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Abstract

Learning to cooperate is crucially important in
multi-agent environments. The key is to under-
stand the mutual interplay between agents. How-
ever, multi-agent environments are highly dy-
namic, which makes it hard to learn abstract rep-
resentations of their mutual interplay. In this pa-
per, we propose graph convolutional reinforce-
ment learning for multi-agent cooperation, where
graph convolution adapts to the dynamics of the
underlying graph of the multi-agent environment,
and relation kernels capture the interplay between
agents by their relation representations. Latent
features produced by convolutional layers from
gradually increased receptive fields are exploited
to learn cooperation, and the cooperation is fur-
ther boosted by temporal relation regularization
for consistency. Empirically, we show that our
method substantially outperforms existing meth-
ods in a variety of cooperative scenarios.

1. Introduction
Cooperation is a widespread phenomenon in nature from
viruses, bacteria, and social amoebae to insect societies,
social animals, and humans (Melis & Semmann, 2010). Hu-
man exceeds all other species in terms of the range and scale
of cooperation. The development of human cooperation is
facilitated by the underlying graph of human societies (Oht-
suki et al., 2006; Apicella et al., 2012), where the mutual
interplay between humans is abstracted by their relations.

It is crucially important to enable agent to learn to cooperate
in multi-agent environments for many applications, e.g., au-
tonomous driving (Shalev-Shwartz et al., 2016), traffic light
control (Wiering, 2000), smart grid control (Yang et al.,
2018a), and multi-robot control (Matignon et al., 2012).
Multi-agent reinforcement learning (MARL) facilitated by
communication (Sukhbaatar et al., 2016; Peng et al., 2017;
Jiang & Lu, 2018), mean field theory (Yang et al., 2018b),
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and causal influence (Jaques et al., 2018) have been ex-
ploited for multi-agent cooperation. However, communica-
tion among all agents (Sukhbaatar et al., 2016; Peng et al.,
2017) makes it hard to extract valuable information for co-
operation, while communication with only nearby agents
(Jiang & Lu, 2018) may restrain the range of cooperation.
MeanField (Yang et al., 2018b) captures the interplay of
agents by mean action, but the mean action eliminates the
difference among agents and thus incurs the loss of im-
portant information that could help cooperation. Causal
influence (Jaques et al., 2018) is a measure of action influ-
ence, which is the policy change of an agent in the presence
of an action of another agent. However, causal influence
is not directly related to the reward of environment and
thus may not encourage cooperation. Nevertheless, none
of existing work studies multi-agent cooperation from the
perspective of the underlying graph, which could potentially
help understand agents’ mutual interplay and promote their
cooperation as it does in human cooperation.

In this paper, we propose graph convolutional reinforcement
learning for multi-agent cooperation, where the multi-agent
environment is modeled as a graph, each agent is a node,
and the encoding of local observation of agent is the feature
of node. We apply convolution operations to the graph of
agents. By employing multi-head attention (Vaswani et al.,
2017) as the convolution kernel, graph convolution is able
to extract the relation representation between nodes and
convolve the features from neighboring nodes just like a
neuron in a convolutional neural network (CNN). Latent
features extracted from gradually increased receptive fields
are exploited to learn cooperative policies. The gradient of
an agent not only backpropagates to itself but also to other
agents in its receptive fields to reinforce the learned coop-
erative policies. Moreover, the relation representation is
temporally regularized to help the agent develop consistent
cooperative policy.

Graph convolutional reinforcement learning, namely DGN,
is instantiated based on deep Q network, but it can also
be realized using policy gradient or actor-critic. DGN is
trained end-to-end, adopting the paradigm of centralized
training and distributed execution. Moreover, as DGN
shares weights among all agents, it is easy to scale, well
suited in large-scale MARL. DGN abstracts the mutual in-
terplay between agents by relation kernels, extracts latent
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features by convolution, and induces consistent cooperation
by temporal relation regularization. We empirically show
the learning effectiveness of DGN in jungle and battle games
and routing in packet switching networks. We demonstrate
that DGN agents are able to develop cooperative and so-
phisticated strategies and the performance of DGN agents
surpasses existing methods in a large margin.

By ablation studies, we demonstrate/verify that: (i) Graph
convolution greatly enhances the cooperation of agents. Un-
like other parameter-sharing methods, graph convolution
allows the gradient of one agent to flow to neighbors ac-
cording to their contribution, promoting the mutual help.
(ii) Relation kernels help create a policy in MARL that can
better generalize to the environment with much more agents,
which is very important for real-world applications, since we
can train with much fewer agents and directly use in large-
scale environments. (iii) Temporal regularization, which
minimizes the KL divergence of relation representations in
successive timesteps, boosts the cooperation, helping the
agent to form a long-term and consistent policy in the highly
dynamic environment with a lot of moving agents.

To the best of our knowledge, we are the first to propose
graph convolutional reinforcement learning in MARL.

2. Related Work
MADDPG (Lowe et al., 2017) and COMA (Foerster et al.,
2018) are the extension of actor-critic model for multi-
agent environments, where MADDPG is designed for mixed
cooperative-competitive environments and COMA is pro-
posed to solve multi-agent credit assignment in cooperative
settings. A centralized critic that takes as input the observa-
tions and actions of all agents are used in MADDPG and
COMA, while networked critics that are updated via com-
munication are considered in (Zhang et al., 2018). However,
all these three models have to train an independent policy
network for each agent, which tends to learn a policy special-
izing specific tasks, easily overfits to the number of agents,
and does not scale.

There are several models that have been proposed to learn
multi-agent cooperation by communication. These models
are end-to-end trainable by backpropagation. CommNet
(Sukhbaatar et al., 2016) uses continuous communication
for full cooperative tasks. At a single communication step,
each agent sends its hidden state as the message to the com-
munication channel and then the averaged message from
other agents is fed into the next layer. BiCNet (Peng et al.,
2017) uses a reccurent neural network (RNN) as the commu-
nication channel to connect each individual agent’s policy
and value networks. ATOC (Jiang & Lu, 2018) and Tar-
MAC (Das et al., 2018) enable agents to learn when to
communicate and who to send messages to, respectively,

using attention mechanism. These communication models
prove that communication does help for cooperation. How-
ever, full communication is costly and inefficient, while
restrained communication limits the range of cooperation.

When the number of agents increases, learning becomes
difficult due to the curse of dimensionality and exponential
growth of agent interactions. Instead of considering the
different effects of other individuals on each agent, Mean-
Field (Yang et al., 2018b) approximates the effect of other
individuals by their mean action. However, the mean action
eliminates the difference among these agents in terms of
observation and action and thus incurs the loss of important
information that could help cooperative decision making.
In (Jaques et al., 2018), agents are rewarded for having
causal influence over the actions of other agents, where
causal influence is assessed using counterfactual reasoning.
However, causal influence is not directly related to the re-
ward of environment and thus cannot effectively encourage
cooperation.

None of existing work in MARL studies the underlying
graph of the multi-agent environment. However, we argue
that the underlying graph could greatly promote multi-agent
cooperation as it does for human cooperation (Ohtsuki et al.,
2006; Apicella et al., 2012).

3. Background
3.1. Graph Convolutional Networks

Many important real-world applications come in the form
of graphs, such as social networks (Kipf & Welling, 2017),
protein-interaction networks (Duvenaud et al., 2015), and
3D point cloud (Charles et al., 2017). In the last couple
of years, several frameworks (Henaff et al., 2015; Niepert
et al., 2016; Kipf & Welling, 2017; Velickovic et al., 2017)
have been architected to extract locally connected features
from arbitrary graphs. Typically, the goal is to learn a func-
tion of features on graphs. A graph convolutional network
(GCN) takes as input the feature matrix that summarizes the
attributes of each node and outputs a node-level feature ma-
trix. The function is similar to the convolution operation in
CNNs, where the kernels are convolved across local regions
of the input to produce feature maps.

3.2. Interaction Networks

Learning common sense knowledge is one of the keys to
artificial intelligence. However, it has proven difficult for
neural networks. Interaction networks aim to reason the ob-
jects, relations and physics in complex systems. Interaction
networks predict the future states and underlying properties,
which is similar to the way of human thinking. There are
several frameworks have been proposed to model the inter-
actions. IN (Battaglia et al., 2016) focuses on the binary
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relations between entities. The model computes the effect
of interaction and predicts the next state by taking the in-
teraction into consideration. VIN (Watters et al., 2017) pre-
dicts the future states from raw visual observations. VAIN
(Hoshen, 2017) models multi-agent relations and predicts
the future states with attention mechanism.

3.3. Relational Reinforcement Learning

The idea of relational reinforcement learning (RRL) is to
combine RL with relational learning by representing states
and policies based on relations. Neural networks can operate
on structured representations of a set of entities, non-locally
compute interactions on a set of feature vectors, and perform
relational reasoning via iterated message passing (Zambaldi
et al., 2018). The relation block, multi-head dot-product
attention (Vaswani et al., 2017), is embedded into neural
networks to learn pairwise interaction representation.

4. Method
We construct the multi-agent environment as a graph, where
agents in the environment are represented by the nodes of
the graph, and for each node, there are K edges connected
to its K nearest neighbors (e.g., in terms of distance or other
metrics, depending on the environment). The intuition be-
hind this is nearer neighbors are more likely to interact with
and affect each other. Moreover, in large-scale multi-agent
environments, it is costly and less helpful to take the influ-
ence of all agents into consideration, because receiving a
large amount of information requires high bandwidth and
incurs high computational complexity, and agents cannot
differentiate valuable information from globally shared in-
formation (Jiang & Lu, 2018). In addition, as convolution
can gradually increase the receptive field of an agent, the
scope of cooperation is not restricted. Therefore, it is ef-
ficient and effective to consider only K nearest neighbors.
Unlike the static graph considered in GCNs, the graph of
multi-agent environment is continuously changing over time
as agents move or enter/leave the environment. Therefore,
DGN should be able to adapt the dynamics of the graph and
learn as the multi-agent environment evolves.

4.1. Graph Convolution

We consider the partially observable environment, where
at each timestep t each agent i receives a local observation
oti, which is the property of node i in the graph, takes an
action ati, and gets a reward rti . DGN consists of three
types of modules: observation encoder, convolutional layer
and Q network, as illustrated in Figure 1. The local ob-
servation oti is encoded into a feature vector hti by MLP
for low-dimensional input or CNN for visual input. The
convolutional layer integrates the feature vectors in the local
region (including node i and its K neighbors) and generates

Encoder (MLP/CNN)

Convolutional Layer
(relation kernel)

Q network

Convolutional Layer
(relation kernel) 

Agent

Figure 1. DGN consists of three modules: encoder, convolutional
layer, and Q network. All agents share weights and gradients are
accumulated to update the weights.

the latent feature vector h
′t
i . By stacking more convolu-

tional layers, the receptive field of an agent gradually grows,
where more information is gathered, and thus the scope of
cooperation can also increase. That is, by one convolutional
layer, node i can directly acquire the latent feature vectors
from the encoders of nodes in one-hop (K neighbors). By
stacking two layers, node i can get the output of the first
convolutional layer of the nodes in one-hop, which contains
the information from nodes in two-hop. However, more con-
volutional layers will not increase the local region of node
i, i.e., node i still only communicates with its K neighbors.
This salient characteristic is very important as we consider
decentralized execution. Details of the convolution kernel
will be discussed in next subsection.

As the number and position of agents vary over time, the
underlying graph continuously changes, which brings diffi-
culties to graph convolution. To address the issue, we merge
all agents’ feature vectors at time t into a feature matrix F t

with size N×L in the order of index, where N is the number
of agents and L is the length of feature vector. Then, we
construct an adjacency matrix Cti with size (K + 1) × N
for agent i, where the first row is the one-hot representation
of the index of node i, and the jth row, j = 2, . . . ,K+ 1,
is the one-hot representation of the index of the (j − 1)th
nearest neighbor. Then, we can obtain the feature vectors in
the local region of node i by Cti × F t.

Inspired by DenseNet (Huang et al., 2017), for each agent,
the features of all the preceding layers are concatenated
and fed into the Q network, so as to assemble and reuse
the observation representation and features from different
receptive fields, which respectively have distinctive contri-
butions to the strategy that takes the cooperation at different
scopes into consideration. The Q network selects the ac-
tion that maximizes the Q-value with a probability of 1− ε
or acts randomly with a probability of ε. The gradient of
Q-loss of each agent will backpropagate not only to itself
and K neighbors but also to other agents in its receptive
fields. That is to say, the agent not only focuses on maxi-
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mizing its own expected reward but also considers how its
policy affects other agents, and hence agents are enabled to
learn cooperation. Moreover, each agent receives the encod-
ing of observations and intentions of nearby agents, which
makes the environment more stable from the perspective of
individual agent.

In DGN, all agents share weights. However, this does
not prevent the emergence of sophisticated cooperative
strategies, as we will show in the experiments. We adopt
the paradigm of centralized training and distributed exe-
cution. During training, at each timestep, we store the tu-
ple (O,A,O′,R, C) in the replay buffer B, where O =
{o1, · · · , oN}, A = {a1, · · · , aN}, O′ = {o′1, · · · , o′N},
R = {r1, · · · , rN}, and C = {C1, · · · , CN}. Note that
we drop time t in the notations for simplicity. Then, we sam-
ple a random minibatch of S samples from B and minimize
the loss

L(θ) = 1

S

∑
S

1

N

N∑
i=1

(yi −Q (Oi, ai; θ))
2
, (1)

where yi = ri+γmaxa′Q (O′
i, a

′
i; θ

′) , Oi ⊆ O denotes the
set of observations of all the agents in i’s receptive fields,
γ is the discount factor, and the model is parameterized by
θ. To make the learning process more stable, we keep C
unchanged in two successive timesteps when computing the
Q-loss in training. The gradients of Q-loss of all agents
are accumulated to update the parameters. Each agent not
only minimizes its own Q-loss but also Q-loss of other
agents who the agent collaborates with. Then, we softly
update the target network as θ′ = βθ + (1− β)θ′. During
execution, each agent only requires the information from
its K neighbors (e.g., via communication), regardless of the
number of agents. Therefore, our model can easily scale
and thus is suitable for large-scale MARL.

4.2. Relation Kernel

Convolution kernels integrate the information in the recep-
tive field to extract the latent feature. One of the most im-
portant properties is that the kernel should be independent
from the order of the input feature vectors. Mean operation
as in CommNet meets this requirement, but it leads to only
marginal performance gain. BiCNet uses the learnable ker-
nel, i.e., RNN. However, the input order of feature vectors
severely impacts the performance, though the affect is al-
leviated by bi-direction mechanism. Further, convolution
kernels should be able to learn how to abstract the relation
between agents so as to integrate their input features.

Adopting the idea from RRL, we use multi-head dot-product
attention as the convolutional kernel to compute interactions
between entities. Unlike RRL, we take each agent rather
than pixel as an entity. For each agent i, there are a set of
entities Ei (K neighbors and itself) in the local region. The

adjacency matrix

feature matrix

multi-head attention

1

Figure 2. Illustration of computation of the convolutional layer
with relation kernel of multi-head attention for an agent with two
neighbors.

input feature of each entity is projected to query, key and
value representation by each independent attention head.
For attention head m, the relation between i and j ∈ Ei is
computed as

αmij =
exp

(
τ ·Wm

q hi · (Wm
k hj)

T
)∑

e∈Ei
exp

(
τ ·Wm

q hi · (Wm
k he)

T
) , (2)

where τ is a scaling factor. For each attention head, the
value representations of all the input features are weighed
by the relation and summed together. Then, the outputs of M
attention heads for agent i are concatenated and then fed into
function σ, i.e., one-layer MLP with ReLU non-linearities,
to produce the output of the convolutional layer,

h
′

i = σ(Concat[
∑
j∈Ei

αmijWm
v hj ,∀m ∈ M]). (3)

Figure 2 illustrates the computation of the convolutional
layer with relation kernel.

Multi-head attention makes the kernel independent from
the order of input feature vectors, and allows the kernel to
jointly attend to different representation subspaces. More
attention heads give more relation representations and make
the training more stable empirically (Vaswani et al., 2017).
Moreover, with multiple convolutional layers, higher order
relation representations can be extracted, which effectively
capture the interplay between agents and greatly help to
make cooperative decision.

4.3. Temporal Relation Regularization

As we train our model using deep Q learning, we use future
value estimate as target for the current estimate. We follow
this insight and apply it to the relation kernel in our model.
Intuitively, if the relation representation produced by the
relation kernel of upper layer truly captures the abstract
relation between surrounding agents and itself, such relation
representation should be stable/consistent for at least a short
period of time, even when the state/feature of surrounding
agents changes. Since in our relation kernel, the relation is
represented as the attention weight distribution to the state
of surrounding agents, we use the attention weight distribu-
tion in the next state as the target for the current attention
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reward  for attacking
other agent� reward  for  

being attacked �

reward  for eating
food reward  for attacking

the enemy

reward  for being
killed
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reward  for attempting
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router

Figure 3. Illustration of experimental scenarios: jungle (left), where an agent gets reward by eating good, but gets higher reward by
attacking other agents; battle (mid), where agents cooperate to fight against more powerful enemies; routing (right), where agents try to
optimize the mean delay of data packets by determining only the next hop of a packet at a router.

weight distribution to encourage the agent to form the con-
sistent relation representation. As the relation in different
states should not be the same but similar, we use KL diver-
gence to compute the distance between the attention weight
distributions in the two states.

It should be noted that we do not use the target network to
produce the target relation representation as in normal deep
Q learning. This is because relation representation is highly
correlated with the weights of feature extraction. But update
of such weights in target network always lags behind that
of the current network. Since we only focus on the self-
consistent of the relation representation based on the current
feature extraction network, we apply current network to the
next state to produce the new relation representation instead
of the target network as in deep Q learning.

Let Gκ(Oi; θ) denotes the attention weight distribution of
relation representations at convolutional layer κ for agent
i. Then, with temporal relation regularization, the loss is
modified as below

L(θ) = 1

S

∑
S

1

N

N∑
i=1

((yi −Q (Oi, ai; θ))
2

+ λDKL(Gκ(Oi; θ)||zi),

(4)

where zi = Gκ(O′
i; θ) and λ is the coefficient for the regu-

larization loss.

Temporal relation regularization of upper layer in DGN
helps the agent to form long-term and consistent action
policy in the highly dynamical environment with a lot of
moving agents. This will further help agents to form cooper-
ative behavior since many cooperation tasks need long-term
consistent actions of the collaborated agents to get the final
reward. We will further analyze this in the experiments.

5. Experiments
For the experiments, we adopt a grid-world platform MA-
gent (Zheng et al., 2017). In the environment, each agent
corresponds to one grid and has a local observation that con-
tains a square view with 11× 11 grids centered at the agent

and its own coordinates. The discrete actions are moving
or attacking. Two scenarios, jungle and battle, are consid-
ered to investigate the cooperation among agents. Also, we
build an environment, routing, that simulates the routing in
packet switching networks to verify the applicability of our
model in read-world applications. These three scenarios are
illustrated in Figure 3. In the experiments1, we compare
DGN with independent DQN (Mnih et al., 2015), Comm-
Net (Sukhbaatar et al., 2016), and MeanField Q-learning
(MFQ) (Yang et al., 2018b). The hyperparameters of DGN
and baselines are summarized in Appendix. The video in
Appendix provides more details about the experiments. The
codes of DGN are also available in Appendix.

5.1. Jungle

This scenario is a moral dilemma. There are N agents and
L foods in the field, where foods are stationary. An agent
gets positive reward by eating food, but gets higher reward
by attacking other agent. At each timestep, each agent can
move to or attack one of four neighboring grids. The reward
is 0 for moving, +1 for attacking (eating) the food, +2 for
attacking other agent, −4 for being attacked, and −0.01
for attacking a blank grid (inhibiting excessive attacks).
This experiment is to examine whether agents can learn
the strategy of collaboratively sharing resources rather than
attacking each other.

We trained all the models in the setting of N = 20 and
L = 12 for 2000 episodes. Figure 4a shows their learning
curves, where DGN-M is graph convolution with mean ker-
nel instead of relation kernel, and each model is with three
training runs. Table 1 shows the mean reward (averaged
over all agents and timesteps) and number of attacks be-
tween agents (averaged over all agents) over 30 test runs,
each game unrolled with 120 timesteps.

1In the experiments, we consider open systems, e.g., battle and
routing, where agents come and go, and thus it is infeasible to
train a model for every agent. Therefore, we do not consider the
methods, which have to train an independent policy network for
each agent, as baselines such as MADDPG (Lowe et al., 2017) and
COMA (Foerster et al., 2018).
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(a) jungle (b) battle (c) routing

Figure 4. Learning curves in terms of mean reward in jungle, battle, and routing, where DGN is graph convolution with relation kernel,
DGN-M is graph convolution with mean kernel, and DGN+R is DGN with temporal relation regularization. The effectiveness of graph
convolution, relation kernel, and temporal relation regularization can be illustrated respectively by the differences between CommNet and
DGN-M, between DGN-M and DGN, and between DGN and DGN+R. For all the methods, the shadowed area is enclosed by the min and
max value of different training runs, and the solid line in middle is the mean value.

Table 1. Jungle

(N, L) DGN DGN-M MFQ CommNet DQN

(20, 12)
mean reward 0.70 0.66 0.62 0.30 0.24

# attacks 0.91 1.89 2.74 5.44 7.35

(50, 12)
mean reward 0.67 0.63 0.57 0.27 0.20

# attacks 0.91 1.88 3.13 6.35 9.02

DGN outperforms all the baselines during training and test
in terms of mean reward and number of attacks between
agents. It is observed that DGN agents can properly select
the close food and seldom hurt each other, and the food can
be allocated rationally by the surrounding agents, as shown
in Figure 5a. Moreover, attacks between DGN agents are
much less than others, i.e., 2× and 3× less than DGN-M and
MFQ, respectively. Sneak attack, fierce conflict, and hesita-
tion are the characteristics of CommNet and DQN agents,
as illustrated in Figure 5b, verifying their failure of learning
cooperation. Although DGN-M and CommNet both use
mean operation, DGN-M substantially outperforms Comm-
Net. This is attributed to the graph convolution that can
effectively extract latent features from gradually increased
receptive field. Moreover, comparing DGN with DGN-M,
we can conclude that the relation kernel that abstracts the
relation representation between agents does help to learn
cooperative strategy.

We directly apply the trained model with N = 20 and L =
12 to the scenario of N = 50 and L = 12. Higher agent
density and food shortage make the moral dilemma more
complicated. The slight drop of mean reward of all the
models is because food is not enough to supply each agent.
DGN maintains the number of attacks, which means DGN
agents can still rationally share foods even when food is
not enough to supply each agent. However, agents of MFQ,
CommNet and DQN attack each other more often when
there are more agents sharing food.

5.2. Battle

This scenario is a fully cooperative task, where N agents
learn to fight against L enemies who have superior abilities
than the agents. The moving or attacking range of the agent
is the four neighbor grids, however, the enemy can move
to one of twelve nearest grids or attack one of eight neigh-
bor grids. Each agent/enemy has six hit points (i.e., being
killed by six attacks). The reward is +5 for attacking the
enemy, −2 for being killed, and−0.01 for attacking a blank
grid. After the death of an agent/enemy, the balance will be
easily lost and hence we will add a new agent/enemy at a
random location to maintain the balance. By that, we can
make fair comparison among different methods in terms of
kills, deaths and kill-death ratio besides reward for given
timesteps. The pretrained DQN model built-in MAgent
takes the role of enemy. As individual enemy is much
powerful than individual agent, an agent has to collaborate
with others to develop coordinated tactics to fight enemies.
Moreover, as the hit point of enemy is six, agents have to
continuously cooperate to kill the enemy. Therefore, the task
is much more challenging than jungle in terms of learning
to cooperate.

We trained all the models with the setting of N = 20 and
L = 12 for 2000 episodes. Figure 4b shows the learning
curves of all the models in terms of mean reward. DGN
converges to much higher mean reward than other baselines,
and its learning curve is more stable. For CommNet and
DQN, they first get relative high reward, but they eventually
converge to much lower reward than others. As observed
in the experiment, at the beginning of training, DQN and
CommNet learn sub-optimum policies such as gathering
as a group in a corner to avoid being attacked, since such
behaviors generate relatively high reward. However, since
the distribution of reward is uneven, i.e., agents at the ex-
terior of the group are easily attacked, learning from the
“low reward experiences” produced by the sub-optimum pol-
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(d) DQN in battle

Figure 5. Illustration of representative behaviors of DGN and DQN agents in jungle and battle.

icy, DQN and CommNet converge to more passive policies,
which lead to much lower reward. We evaluate DGN and
the baselines by running 30 test games, each game unrolled
with 300 timesteps. Table 2 shows the mean reward, kills,
deaths, and kill-death ratio.

DGN agents learn a series of tactical maneuvers, such as
encircling and envelopment of a single flank. For single
enemy, DGN agents learn to encircle and attack it together.
For a group of enemies, DGN agents learn to move against
and attack one of the enemy’s open flanks, as depicted
in Figure 5c. CommNet agents adopt an active defense
strategy. They seldom launch attacks but rather run away
or gather together to avoid being attacked. DQN agents
driven by self-interest fail to learn a rational policy. They
are usually forced into a corner and passively react to the
enemy’s attack, as shown in Figure 5d. MFQ agents do
not effectively cooperate with each other because there is
no gradient backpropagation among agents to reinforce the
cooperation.

In DGN, relation kernels can extract high order relations
between agents from gradually increased receptive fields,
which can be easily exploited to yield cooperation. More-
over, the gradient backpropagation from an agent to other
agents in the receptive field enforces the cooperation. There-
fore, DGN outperforms other baselines.

DGN with temporal relation regularization, i.e., DGN+R,
achieves consistently better performance compared to DGN
as shown in Figure 4b and Table 2. In the experiment, it
is observed that DGN+R agents indeed behave more con-
sistently and synchronously with each other, while DGN
agents are more likely to be distracted by the new appear-
ance of enemy or friend nearby and abandon its original
intended trajectory. This results in fewer appearances of suc-
cessful formation of encircling of a moving enemy, which
might need consistent cooperation of agents to move across
the field. DGN+R agents often overcome such distraction
and show more long-term strategy and aim by moving more
synchronously to chase the enemy until encircle and destroy
it. From this experiment, we can see that temporal relation
regularization indeed helps agents to form more consistent
cooperation.

Table 2. Battle

DGN+R DGN DGN-M MFQ CommNet DQN

mean reward 0.91 0.84 0.50 0.70 0.03 −0.03
# kills 220 208 121 193 7 2

# deaths 97 101 84 92 27 74
kill-death ratio 2.27 2.06 1.44 2.09 0.26 0.03

5.3. Routing

This scenario is an abstraction of routing in packet switching
networks, where the routing protocol tries to optimize the
mean delay of data packets by making distributed decision
at each router (i.e., by determining only the next hop of
a packet at a router). The network consists of L routers.
Each router is randomly connected to a constant number of
routers (three in the experiment), and the network topology
is stationary. The bandwidth of each link is the same and set
to 1. There are N data packets with a random size between
0 and 1, and each packet is randomly assigned a source
and destination router. If there are multiple packets with
the sum size larger than 1, they cannot go through a link
simultaneously.

In the experiment, data packets are agents, and they aim
to quickly reach the destination while avoiding congestion.
At each timestep, the observation of a packet is its own
attributes (i.e., current location, destination, and data size),
the attributes of cables connected to its current location
(i.e., load, length), and neighboring data packets (on the
connected cable or routers). It takes some timesteps for a
data packet to go through a cable, a linear function of the
cable length. The action space of a packet is the choices of
next hop. If the link to the selected next hop is overloaded,
the data packet will stay at the current router and be punished
with a reward −0.2. Once the data packet arrives at the
destination, it leaves the system and gets a reward +10
and another data packet enters the system with random
initialization.

We trained all the models with the setting of N = 20 and L =
20 for 2000 episodes. Figure 4c shows the learning curves in
terms of mean reward. DGN and DGN+R converge to much
higher mean reward and more quickly than the baselines.
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Table 3. Routing

(N, L) Floyd Floyd with BL DGN+R DGN DGN-M MFQ CommNet DQN

(20, 20)
mean reward 1.23 1.21 0.99 1.02 0.49 0.18

delay 6.3 8.7 8.0 8.1 9.8 9.4 18.6 46.7
throughput 3.17 2.30 2.50 2.47 2.04 2.13 1.08 0.43

(40, 20)
mean reward 0.86 0.83 0.70 0.78 0.39 0.12

delay 6.3 13.7 9.8 10.0 12.7 11.8 23.5 83.6
throughput 6.34 2.91 4.08 4.00 3.15 3.39 1.70 0.49

(40, 20) retrained
mean reward 0.94 0.90 0.78 0.76 0.35 0.05

delay 6.3 13.7 10.2 10.5 12.2 12.8 21.2 112.2
throughput 6.34 2.91 3.92 3.81 3.27 3.12 1.86 0.35

DGN-M and MFQ have similar mean reward at the end,
though MFQ converges faster than DGN-M. As expected,
DQN performs the worst, which is much lower than others.

We evaluate all the models by running 10 test games, each
game unrolled with 300 timesteps. Table 3 shows the mean
reward, mean delay of data packets, and throughput, where
the delay of a packet is measured by the timesteps taken
from source to destination and the throughput is the number
of delivered packets per timestep. To better interpret the
performance of the models, we calculate the shortest path
for every pair of nodes in the network using Floyd algorithm.
Then, during test, we directly calculate the mean delay based
on the shortest path of each packet, which is 6.3 (Floyd in
Table 3). Note that this delay is without considering the
bandwidth limitation (i.e., data packets can go through any
link simultaneously). Thus, this is the ideal case for the
routing problem. When considering the bandwidth limit,
we let each packet follow its shortest path, and if a link is
congested, the packet will wait at the router until the link
is unblocked. The resulted delay is 8.7 (Floyd with BL in
Table 3), which can be considered as the practical solution.

As shown in Table 3, the performance of DGN-M, MFQ,
CommNet, and DQN are worse than Floyd with BL. How-
ever, the delay and throughput of DGN are much better than
other models and also better than Floyd with BL. In the
experiment, it is observed that DGN agents tend to select
the shortest path to the destination, and more interestingly,
learn to select different paths when congestion is about to
occur. DQN agents cannot learn the shortest path due to
myopia and easily cause congestion at some links with-
out considering the influence of other agents. Information
sharing indeed helps as DGN-M, MFQ, and CommNet all
outperform DQN. However, they are unable to develop the
sophisticated routing protocol as DGN does. DGN+R has
slightly better performance than DGN. This is because data
packets with different destinations seldom cooperate contin-
uously (sharing many links) along their paths.

To investigate how the traffic pattern affects the performance
of the models, we perform the experiments with heavier data
traffic, i.e., N = 40 and L = 20, where all the models are

directly applied to the setting without retraining (their perfor-
mance with N = 60 and L = 20 is available in Appendix).
From Table 3, we can see that DGN+R and DGN still out-
perform other models and Floyd with BL. Under heavier
traffic, DGN+R and DGN are much better than Floyd with
BL, and DGN-M and MFQ are also better than Floyd with
BL. The reason is that the strategy of Floyd with BL (i.e.,
simply following the shortest path) is favorable when traffic
is light and congestion is rare, while this does not work
well when traffic is heavy and congestion easily occurs. Al-
though the traffic is 2× heavier than before, the delay of
DGN+R and DGN only increases about 20%, which makes
the throughput 1.6× higher than before. We also retrain all
the models in this setting. Interestingly, as show in Table 3,
DGN+R and DGN with retraining have slightly higher re-
ward, but longer delay and lower throughput. The reason
is that agents trained in heavy traffic pay more attention
to avoiding congestion (reducing the penalty), which may
induce agents to take a longer path. However, when traffic
is light, congestion is less likely and agents mainly focus on
finding the shortest path. By the experiments, we can see
that our model trained with fewer agents can well generalize
to the setting with more agents, which demonstrates that
the policy that takes as input the integrated features from
neighboring agents based on their relations scales well with
the number of agents.

6. Conclusions
We have proposed a graph convolutional model for multi-
agent cooperation. DGN adapts to the dynamics of the
underlying graph of multi-agent environment and exploits
convolution with relation kernels to extract latent features
from gradually increased receptive fields for learning coop-
erative strategies. The gradient of an agent not only back-
propagates to itself but also to other agents in its receptive
fields to reinforce the learned cooperative strategies. More-
over, the relation representations are temporally regularized
to make the cooperation more consistent. Empirically, DGN
significantly outperforms existing methods in a variety of
cooperative multi-agent environments.
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Q network affine transformation affine transformation (1024, 256) (1024, 256)
MLP activation ReLU

initializer random normal
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A. Hyperparameters
Table 4 summarizes the hyperparameters used by DGN and
the baselines in the experiments.

B. Additional Results
Table 5 gives the experimental result of routing when apply-
ing the models trained in the setting of N = 20 and L = 20
to N = 60 and L = 20. We can see that DGN+R and DGN
still substantially outperform the baselines and Floyd with
BL.

C. Video and Codes
The video of the experiments is given by this link https:
//goo.gl/AFV9qi. The video shows the games in jun-

gle, battle, and routing. The video aims to highlight dif-
ferent behaviors of trained agents. The codes of DGN are
available at https://github.com/PKU-AI-Edge/
GraphConv4MARL.git/.
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