
Community Detection in Weighted Networks:

Algorithms and Applications

Zongqing Lu∗, Yonggang Wen∗ and Guohong Cao†

∗Nanyang Technological University

{luzo0002, ygwen}@ntu.edu.sg
†The Pennsylvania State University

gcao@cse.psu.edu

Abstract—Community detection is an important issue due to its
wide use in designing network protocols such as data forwarding
in Delay Tolerant Networks (DTN) and worm containment in
Online Social Networks (OSN). However, most of the existing
community detection algorithms focus on binary networks. Since
most networks are weighted such as social networks, DTN or
OSN, in this paper, we address the problems of community
detection in weighted networks and exploit community for data
forwarding in DTN and worm containment in OSN. We propose
a novel community detection algorithm, and then introduce two
metrics called intra-centrality and inter-centrality, to characterize
nodes in communities. Based on these metrics, we propose an
efficient data forwarding algorithm for DTN and an efficient
worm containment strategy for OSN. Extensive trace-driven
simulation results show that the data forwarding algorithm and
the worm containment strategy significantly outperform existing
works.

I. INTRODUCTION

Community is used to represent a group of nodes in a

network where nodes inside the community have more internal

connections than external connections [1]. Community has

been well studied in biology, sociology, psychology, business,

etc. Recently, it has been exploited for designing network

protocols such as data forwarding in Delay Tolerant Networks

(DTN) and worm containment in Online Social Networks

(OSN).

In DTN, mobile nodes contact each other opportunistically.

Due to low node density and unpredictable node mobility, end-

to-end connections are hard to maintain. Alternatively, node

mobility is exploited to let mobile nodes physically carry data

as relays, and forward data opportunistically upon contacts.

Then, the key problem is how to select the appropriate relays.

Since social relations among mobile users are more likely

to be long-term characteristics and less volatile than node

mobility, forwarding schemes based on social community

[2][3][4][5][6][7] outperform traditional approaches [8][9].

In OSN, especially when the communication is through

wireless networks, mobile devices can be easily infected by

malicious software such as worms or virus. Thus, many

researchers design solutions to slow down and contain the

worm propagation. Among them, one important problem is

how to schedule who to get the software patches first when

This work was supported in part by Network Science CTA under grant
W911NF-09-2-0053.

network bandwidth is a bottleneck. To address this problem,

community concepts are exploited in [10][6]. In [10], the

bridge nodes between communities are first patched so that

they can be isolated to contain the worm propagation. In [6],

the overlapped nodes between communities are identified and

their neighboring nodes are patched first.

From these two examples, we can see that the community

structure can be exploited for protocol design. Then, how to

detect the community becomes an important issue. Community

detection has attracted lots of attention. However, most of

the existing detection algorithms focus on binary networks

including [11][12][13], since many networks are naturally bi-

nary, such as biological networks where the edge between two

nodes either exists or not. Among these detection algorithms,

CFinder [11] and RAK [12] are the most popular and efficient

ones. CFinder defines a k-clique community as a union of all

k-cliques that can be reached from each other through a series

of adjacent k-cliques. RAK attaches a unique label with each

node and uses label propagation to detect communities.

However, most networks are weighted such as social net-

works, DTN or OSN. To simplify the analysis or design, these

networks have been formulated as binary networks in many

existing works. For example, best friends are treated the same

as normal friends in OSN. Multiple contacts or single contact

are both counted as having a contact in DTN. Although binary

network can simplify the analysis, some important information

of weighted network may be lost, and hence affect the network

performance. For example, with binary network in DTN, when

choosing a relay, a node will not be able to differentiate nodes

that it has contacted once or ten times in the past.

Recently, there is some research on community detection

in weighted networks, e.g., COPRA [14] and Strength[15].

COPRA is based on RAK [12], and hence, similar to RAK, it

does not converge to a constant state during label propagation

most of time and the detected community is not deterministic.

Strength [15] exploits node strength and belonging degree to

detect the overlapping community structure. However, the per-

formance of Strength degrades dramatically as the overlapping

increases. Moreover, none of them has been applied to DTN

or OSN.

In this paper, we address the problems of community

detection in weighted networks and exploit community for

data forwarding in DTN and worm containment in OSN. Our

detailed contributions are as follows:

• We design a novel community detection algorithm.

• We introduce two metrics: intra-centrality and inter-

centrality, to characterize nodes in communities, based

on which we propose a novel data forwarding algorithm

for DTN and a new worm containment strategy for OSN.

• We study the performance of the data forwarding al-

gorithm and the worm containment strategy based on

detected communities, and compare them to existing

work.

The rest of this paper is organized as follows. Section

II presents our community detection algorithm for weighted

networks. Then, we introduce the concepts of intra-centrality

and inter-centrality in Section III. In Section IV, we present

our forwarding algorithm for DTN, and worm containment

strategy for OSN. Section V evaluates the performance of our

proposed algorithms, and Section VI concludes the paper.

II. COMMUNITY DETECTION IN WEIGHTED NETWORKS

A. Preliminary

Let G = (V,E) represent a weighted and undirected

network, where V denotes the set of nodes and E denotes

the set of edges. For two nodes u, v ∈ V , the edge between

them is denoted as (u, v) ∈ E, and wuv denotes the weight

of the edge. The network community structure is denoted by

C = {C1, C2, C3, ...}, where Ci ∈ C denotes a community.

We do not require Ci∩Cj = ∅ which means the communities

may be overlapped. For simplicity, we denote Ci as C if

there is no confusion. For a node u ∈ V , ku, Nu are the

degree and the neighbor set of node u, respectively, where

ku =
∑

v∈Nu
wuv . For a community C and a node u, the

belonging degree B(u,C) between node u and community C
is defined as

B(u,C) =

∑
v∈C wuv

ku
. (1)

Thus, when all neighbors of a node u are included in com-

munity C, B(u,C) = 1.

B. Conductance Function

In this paper, we use conductance to identify the community

that has better internal connectivity than external connectivity.

Conductance is a natural and widely-adopted notion of com-

munity goodness [16] and is also known as the normalized

cut metric. The conductance Φ(C) of community C ∈ C in

network G is defined as

Φ(C) =
cut(C,G\C)

wC

, (2)

where cut(C,G\C) denotes the weights of the cut edges of

C and wC denotes the weights of all edges in community C
including the cut edges. For example, for the community that

consists of nodes b and d as shown in Fig. 1, cut(C,G\C) = 4
and wC = 15. With lower conductance, more edge weights are

within the community and the identified community is better.

However, it is generally NP-hard to optimize the conductance

in community detection [16]. Thus, we propose a heuristic

based algorithm in the next subsection .

a

b

c

d

e f

g

h

i

1
1

1

11 1

1

4

5

10

1

5

1
1

2

1

Fig. 1: Community detection in weighted networks.

C. Detection Algorithm

Different from algorithms designed for binary networks, the

edge weight should be taken into consideration in weighted

networks. If the edge weight between two nodes is high

enough, the two nodes should be in the same community.

Our detection algorithm works as follow. For a given

network G, we first choose those nodes that are connected

by the highest weight edges as a temporary community C and

calculate its conductance of Φ(C). Then, there is an expanding

process, which finds all nodes that are adjacent to C (denoted

as NC). We then choose the node in NC with the highest

belonging degree to C and combine it with C to form a new

community C′. If Φ(C′) < Φ(C), the expanding process is

continued for community C′; otherwise, C is designated as

a detected community. Then, the edges within community

C (denoted as EC) is removed from the edge set, and the

whole process is repeated until the edge set is empty. For

completeness, the pseudo code of the detecting algorithm is

shown in Algorithm 1.

Algorithm 1: Detection Algorithm

Input : G = (V,E)
Output: C

1 Initialize: C = ∅;
2 while E 6= ∅ do
3 C = {u, v}, where (u, v) = arg

(u,v)∈E

maxwuv;

4 while NC 6= ∅ do

5 C′ = C ∪ arg
w∈NC

maxB(w,C);

6 if Φ(C′) < Φ(C) then
7 C = C′;
8 else
9 break;

10 end
11 end
12 E = E\EC ;
13 C = C ∪ C;
14 end

Unlike binary network where a threshold is used to deter-

mine a community such as in [6], for weighted networks we

cannot fix the threshold of conductance due to the heteroge-

neous weight distribution. Instead, we use the conductance of

temporary community as the criterion to determine whether

the community should be expanded. The threshold value is

dynamically changed as the chosen community varies and

it is updated after each iteration. A neighboring node is

eligible to be added into the temporary community only if the

newly formed community has a lower conductance. This is

because larger community has more internal connections, and

then the conductance becomes smaller. According to Eq.2, if

Φ(C) > Φ(C′), we have:

cut(C,G\C)

wC

>
cut(C,G\C) + ∆cut

wC +∆w
cut(C,G\C)

wC

>
cut(C,G\C) + ku × (1 − 2B(u,C))

wC + ku × (1−B(u,C))

B(u,C) >
wC − cut(C,G\C)

2× wC − cut(C,G\C)
>

1− Φ(C)

2− Φ(C)
.

When B(u,C) > 1−Φ(C)
2−Φ(C) , node u ∈ NC will be added into

community C. When B(u,C) > 1
2 , whatever Φ(C) is, node u

is eligible to be included in community C. This is reasonable

in practice since node u should belong to C if more than half

of degree of node u is connected with community C,

The detected community may overlap with other commu-

nities, and our algorithm can detect overlapping communities.

This is because we do not require each node to be exclusively

included by one community and the temporary community can

go cross existing communities during the expanding process.

The overlapping part may be very large (more than 50%) in

some cases, thus they need to be merged.

Figure 1 shows an example of the detected communities

in weighted network using our detection algorithm, where

three communities are detected and the overlapped part is also

uncovered as shown in shaded region.

In our algorithm, initially |V | nodes are viewed as |V |
individual communities. After the detection process, |C| com-

munities are detected. As the node with the highest belonging

degree is added to the temporary community at each expanding

step, there are at most |V | − |C| expanding steps. For each

expanding step, the node with the highest belonging degree is

searched with time complexity NCd, where d is the average

number of edges connected with each node. As NC is at most

as large as |V |, the worst time complexity is |V |2.

III. INTRA-CENTRALITY AND INTER-CENTRALITY

Based on the community detection algorithm presented in

the last section, we define two metrics: intra-centrality and

inter-centrality, which can be used for data forwarding in DTN

and worm containment in OSN.

Definition 1. The Intra-centrality of a node is defined as the

number of shortest paths between pairs of nodes in the same

community that go through it.

Let ϕu(C) denote the intra-centrality of node u. Then,

ϕu(C) =
∑

v,w∈C

λ(u, |(v, w)|), u ∈ C,C ∈ C,

where |(v, w)| denotes the shortest path between vertex v
and w, and λ(u, |(v, w)|) yields one when node u located on

|(v, w)|, zero otherwise.

Note that the shortest path cannot go beyond a community,

which means all the shortest paths should be within the

community. To find the shortest path, we use weighted network

analysis where the distance between two directly connected

nodes is the reciprocal of the edge weight. Since a node may

belong to multiple communities, it may have multiple intra-

centrality values, each corresponding to a community.

Intra-centrality measures the influence of nodes within a

community. Within a community, nodes with higher intra-

centrality are more popular; i.e., they have more connections

with other nodes and contact them more frequently.

Definition 2. Inter-centrality of a node for two communities

is defined as the number of shortest paths between two nodes

in these two communities that go through it.

Let φu(Ci, Cj) denote the Inter-centrality of node u for

communities Ci and Cj . Then,

φu(Ci, Cj) =
∑

v∈Ci,w∈Cj
v,w/∈Ci∩Cj

λ(u, |(v, w)|), u ∈ V,Ci, Cj ∈ C,

where the overlapped nodes between two communities are

excluded (v, w /∈ Ci ∩ Cj). Each node will have an inter-

centrality value for each pair of detected communities.

Inter-centrality measures the capability of nodes to connect

two communities. Nodes with higher inter-centrality represent

more connections between communities. That is, the commu-

nications between two communities most likely go through the

nodes with higher inter-centrality and hence removing them

will more likely to isolate these two communities.

IV. COMMUNITY BASED APPLICATIONS

In this section, we introduce two community based appli-

cations: data forwarding in DTN and worm containment in

OSN. We will also present the proposed algorithms for data

forwarding and worm containment based on inter-centrality

and inter-centrality.

A. Data Forwarding in Delay Tolerant Networks

Recent work (e.g., BubbleRap [3] and AFOCS [6]) has

shown that community based data forwarding algorithms can

significantly reduce the number of data replication while

maintaining similar data delivery ratio and data delivery time

in DTN. However, as the community detection in these al-

gorithms is based on binary network, they also have some

weaknesses. For example, BubbleRap may use inaccurate cen-

trality and most traffic between two communities in AFOCS

may not go through overlapped nodes. Different from them,

our solution is based on our community detection algorithm

designed for weighted networks. Based on intra-centrality and

inter-centrality, we design a new forwarding algorithm.

Our data forwarding algorithm works as follow. Suppose

a node (sender) has a message destined for another node

(receiver). If they are in the same community, the sender only

forwards the packet to the node encountered (relay) that has

higher intra-centrality. If they are in different communities,

the sender forwards the packet to the relay which satisfies

the following: (1) the relay is in the same community of the

receiver; or (2) the relay has higher inter-centrality than the

sender when the belonging degrees of the sender and relay

to receiver’s community are both zero or non-zero; or (3)

when the relay has non-zero belonging degree to the receiver’s

community, and the belonging degree of the sender is zero.

Different from existing community-based algorithms, our

forwarding algorithm categorizes data forwarding into for-

warding within community and forwarding between commu-

nities. The intuitions behind our forwarding algorithm can be

summarized as following:

• The nodes that are more influential between two com-

munities (high inter-community) are more probably and

more quickly to forward the message to the community(s)

of destination.

• The nodes that are more popular within one community

(high intra-community) have more chances to deliver the

message to the destination.

By differentiating data forwarding within community and

between communities based on intra-centrality and inter-

centrality, our forwarding algorithm can achieve high data

delivery ratio with less message overhead.

B. Worm Containment in Online Social Networks

Recently, social network based worm patching schemes for

cellular network and OSN proposed have been proposed in

[10] and [6], respectively. The intuition behind these schemes

is to contain worms within infected community before they

spread out. In [10], separators (key nodes that separate network

partitions) are patched. Similarly, the neighbors of overlapped

nodes between two communities are patched in [6]. Both

strategies choose nodes located on the boundary of commu-

nities to be patched first. However, in dense networks, every

node can be boundary node, thus the patch of boundary nodes

is not efficient and effective. Moreover, the selected nodes in

both [10] and [6] cannot effectively block the traffic between

communities, since the nodes do not have much influence

on the connections between communities according to their

definition.

Our worm containment strategy not only consider how to

isolate communities, but also consider how to slow down the

worm spread within a community. In most worm propagation,

after a node is infected, the malicious node may infect the hub

node in the community. Then, most nodes in the community

are infected quickly. Finally, neighboring community will be

infected by the adjacent nodes. Due to characteristics of slow

start and exponential propagation exhibited by worms, by

slowing down the worm propagation we will have more op-

portunities to contain the worms within infected communities

and prevent the worms from spreading to other communities.

The intuitions behind our strategy is as following:

• Patching nodes with high intra-centrality will slow down

the worm propagation within community.

• Patching nodes with high inter-centrality will slow down

the worm propagation between community.

When a node receives the patch, it will be immune to

the worm and can be used to redistribute the patch further.

However, distributing patches to all nodes at the same time

may not be feasible due to the bandwidth limitation in cellular

networks, or the limited availability of vaccines. Thus, we have

to determine the proper patching order for these nodes based

on patch score. The higher the patch score is, the sooner the

node will be patched. The patch score is calculated by the

combination of normalized intra-centrality (normalized by the

number of pairs of nodes within community) and normalized

inter-centrality (normalized by the number of pairs of nodes

between communities). As a node may have multiple intra-

centrality and inter-centrality values, only the largest values

are used to calculate patch scores.

By considering intra-centrality and inter-centrality together,

our worm containment strategy can slow down the worm

spread within community and between communities.

V. PERFORMANCE EVALUATIONS

In this section, we evaluate the performance of the data

forwarding algorithm and the worm containment strategy, and

compare them to existing work.

A. Data Forwarding Algorithm

To evaluate the performance of our data forwarding al-

gorithm in DTN, experiments are conducted based on the

MIT Reality trace [17], which contains contacts among users

carrying Bluetooth devices. Bluetooth devices periodically

discover peers in the neighborhood and record their contacts.

The detail of the trace is summarized in Table I.

TABLE I: MIT Reality trace summary

Trace MIT Reality

Network type Bluetooth
No. of nodes 97

No. of interval contacts 114046
Duration (days) 246

Granularity (seconds) 300
Pairwise contact frequency (per day) 0.10

In our experiment, each node sends 500 messages to other

randomly selected nodes. Messages will be discarded if they

are not successfully delivered within the Time-to-live (TTL).

We compare our Intra-centrality and Inter-Centrality based

forwarding algorithm (called I2C) with other four forwarding

strategies: 1) Epidemic [8], 2) BubbleRap [3] which uses k-

clique [11] as the community detection algorithm, 3) AFOCS

[6], and 4) Baseline where the source keeps the message until

it encounters the destination.

We evaluate these algorithms on two message forwarding

modes: forwarding with message duplication and forwarding

without message duplication. For message duplication, the

algorithms are compared in term of data delivery ratio, data

delivery time, and message replica. For the mode without mes-

sage duplication, data delivery ratio and data delivery time are

considered. As message duplication is seen as data forwarding

cost, delivery ratio achieved in the mode without message

0 10 20 30 40 50
0

20

40

60

80

100

TTL (hour)

D
e
liv

e
ry

 R
a
ti
o
 (

%
)

(a)

Epidemic

I
2
C

BubbleRap

AFOCS

Baseline

0 10 20 30 40 50
0

10

20

30

40

TTL (hour)

M
e
s
s
a
g
e
 R

e
p
lic

a

(b)

Epidemic

I
2
C

BubbleRap

AFOCS

Baseline

0 10 20 30 40 50
0

4

8

12

16

TTL (hour)

D
e
liv

e
ry

 T
im

e
 (

h
o
u
r)

(c)

Epidemic

I
2
C

BubbleRap

AFOCS

Baseline

0 10 20 30 40
0

20

40

60

80

Message Replica

D
e
liv

e
ry

 R
a
ti
o
 (

%
)

(d)

Epidemic

I
2
C

BubbleRap

AFOCS

Baseline

0 10 20 30 40 50
0

5

10

15

20

25

30

35

TTL (hour)

D
e
liv

e
ry

 R
a
ti
o
 (

%
)

(e)

Epidemic

I
2
C

BubbleRap

AFOCS

Baseline

0 10 20 30 40 50
0

4

8

12

16

TTL (hour)

D
e
liv

e
ry

 T
im

e
 (

h
o
u
r)

(f)

Epidemic

I
2
C

BubbleRap

AFOCS

Baseline

Fig. 2: Performances of data forwarding algorithms – Epi-

demic, I2C, BubbleRap, AFOCS and Baseline in terms of

data delivery ratio, data delivery time, and message overhead

based on the MIT reality trace.

duplication is the efficiency of data forwarding algorithms.

Experiments are repeated and the results are averaged for

consistency.

Fig. 2 shows the results of data forwarding on the MIT re-

ality trace, where TTL varies from 1 to 50 hours. In Epidemic

the message is always forwarded to the node encountered, thus

it has the highest delivery ratio and forwarding cost (message

replicas) as shown in Fig. 2a, 2b. On the other hand, Baseline

has the lowest delivery ratio and forwarding cost, since nodes

in this algorithm forward the message only when it reaches

the destination.

Fig. 2a shows that the delivery ratio of I2C is higher

than that of BubbleRap, and BubbleRap incurs much more

message replicas than I2C, up to 40%, as shown in Fig.

2b. AFOCS has both the second lowest delivery ratio and

message replicas. Epidemic has much lower delivery time

than all other algorithms when TTL is larger than 20 hours,

I2C, BubbleRap and Baseline have similar delivery time and

AFOCS is the worst as illustrated by Fig. 2c. Fig. 2d gives

the frontier of each algorithm in terms of delivery ratio and

message replicas. Although I2C, BubbleRap and AFOCS sit

in the similar region, I2C always performs better than the

other two algorithms.

Fig. 2e and Fig. 2f show the delivery ratio and delivery time

of the data forwarding algorithms without message duplica-

tion. Since there is no dedicated strategy behind Epidemic,

Epidemic is just slightly better than Baseline in terms of

delivery ratio. BubbleRap and AFOCS are equivalent, where

BubbleRap is based on global centrality and AFOCS utilizes

overlapped nodes as relays for message forwarding. I2C is

the best and its performance is up to 50% better than other

algorithms, although the delivery time of I2C is only slightly

more than others.

To summarize, there exists a tradeoff between data delivery

ratio and message replica. Epidemic and Baseline are the

upper bound and the lower bound of performance and cost for

data forwarding algorithms in DTN, respectively. All other

algorithms (not just the algorithms evaluated) span between

them as illustrated in Fig. 2d, where the frontiers of all other

algorithms sit in the regions between Epidemic and Baseline.

As demonstrated in Fig. 2, I2C achieves a good balance

between performance and cost, and is the most efficient

algorithm. By selecting different criterion for data forwarding

within community and between communities, respectively,

I2C outperforms BubbleRap and AFOCS.

B. Worm Containment Strategy

To evaluate the worm containment strategies, we use the

Facebook trace from [18]. It contains friendship information

and wall posts among the Facebook user in the New Orleans

regional network for more than four years. We choose a partial

trace which spans half year. The chosen trace is summarized

in Table II, where the contact between two nodes is the wall

post and edge weight is the contact frequency. Without losing

TABLE II: Facebook trace summary

Trace Facebook

No. of nodes 12123
No. of edges 31932

Average node degree 21.4
No. of contacts 129462
Duration (days) 180

generality, we use similar worm propagation model in [10][6]

that mimics the behaviors of the famous worm Koobface that

once spread out on Facebook. We assume that the worms

are able to explore the friendship information for propagation

(such as sending out messages including malicious links).

The probability of node activating the worm received from

his friend is proportional to the contact frequency between

them. The time taken for the worm to propagate from one

user to his friend is inversely proportional to contact frequency

between them. Finally, the worm starts to propagate right after

it successfully infects the user.

At the very beginning, we randomly choose 0.05% of nodes

as the seed set of worm sources to initiate the infection

process. When the infection rate (the fraction of infected nodes

over all nodes) reaches the predefined alarm threshold α,

10 20 30 40 50 60 70 80 90 100
18

20

22

24

26

28

30

Percentage of patched nodes (%)

In
fe

c
ti
o
n
 r

a
te

 (
%

)

I
2
C

AFOCS

Clustering

(a) α = 5%

10 20 30 40 50 60 70 80 90 100
22

24

26

28

30

32

34

Percentage of patched nodes (%)

In
fe

c
ti
o
n
 r

a
te

 (
%

)

I
2
C

AFOCS

Clustering

(b) α = 10%

10 20 30 40 50 60 70 80 90 100
30

32

34

36

38

40

42

Percentage of patched nodes (%)

In
fe

c
ti
o
n
 r

a
te

 (
%

)

I
2
C

AFOCS

Clustering

(c) α = 20%

Fig. 3: Performance of worm containment algorithms – I
2
C, AFOCS and Clustering in terms of infected rate on Facebook

trace with alarm threshold α =5%, 10% and 20%.

the patching process will be initiated. The experiments are

conducted with α=5%, 10% and 20%, respectively.

We compare I2C based worm containment strategy with

AFOCS [6] and cluster based scheme [10] shown as Cluster-

ing. Unlike I2C and Clustering, where the sequence of nodes

to be patched is determined, AFOCS chooses a particular part

of nodes to be patched. The number of patched nodes selected

by AFOCS in Facebook trace is 985. So, in order to compare

the performance with different schemes, we choose the same

number of nodes selected by AFOCS for I2C and Clustering

according to patch score and priority, respectively. The worm

propagation is simulated for 30 days after the alarm threshold

is reached.

Fig. 3 shows the results of infected rate achieved by

different algorithms for alarm threshold α=5%, 10% and 20%,

respectively. For α=5% shown in Fig. 3a, where the patching

process is initialized at very early stage, the infected rates

are still relatively low after 30 days worm propagation. From

Fig. 3, we can see that patching late will result in higher

infected rate. Among these algorithms, our worm containment

scheme has the lowest infected rates, which demonstrates that

patching nodes with high intra-centrality and inter-centrality

can effectively contain the worm propagation. As the nodes

selected by AFOCS and Clustering do not effectively block

worm propagation between communities, they have higher

infected rates.

VI. CONCLUSIONS

In the paper, we proposed a conductance-based community

detection algorithm for weighted networks and designed a

data forwarding algorithm for DTN and a worm containment

strategy for OSN based on two metrics – intra-centrality and

inter-centrality. The experiments on real DTN traces show

that our forwarding algorithm outperforms other community-

based algorithms in terms of data delivery ratio and data

forwarding cost. The experiments on real OSN traces show

that our worm containment strategy has lower infection rate

than other algorithms.

REFERENCES

[1] S. Fortunato, “Community detection in graphs,” Physics Reports, vol.
486, no. 3-5, pp. 75–174, 2010.

[2] E. Daly and M. Haahr, “Social network analysis for routing in discon-
nected delay-tolerant manets,” in ACM Mobihoc 2007.

[3] P. Hui, J. Crowcroft, and E. Yoneki, “Bubble rap: social-based forward-
ing in delay tolerant networks,” in ACM Mobihoc 2008.

[4] W. Gao, Q. Li, B. Zhao, and G. Cao, “Multicasting in delay tolerant
networks: a social network perspective,” in ACM Mobihoc 2009.

[5] W. Gao and G. Cao, “User-centric data dissemination in disruption
tolerant networks,” in IEEE INFOCOM 2011.

[6] N. Nguyen, T. Dinh, S. Tokala, and M. Thai, “Overlapping communities
in dynamic networks: their detection and mobile applications,” in ACM

Mobicom 2011.
[7] W. Gao, G. Cao, T. La Porta, and J. Han, “On exploiting transient social

contact patterns for data forwarding in delay-tolerant networks,” Mobile
Computing, IEEE Transactions on, vol. 12, no. 1, pp. 151 –165, jan.
2013.

[8] A. Vahdat, D. Becker et al., “Epidemic routing for partially connected
ad hoc networks,” Technical Report CS-200006, Duke University, Tech.
Rep., 2000.

[9] Q. Yuan, I. Cardei, and J. Wu, “Predict and relay: an efficient routing
in disruption-tolerant networks,” in ACM Mobihoc 2009.

[10] Z. Zhu, G. Cao, S. Zhu, S. Ranjan, and A. Nucci, “A social network
based patching scheme for worm containment in cellular networks,” in
IEEE INFOCOM 2009.

[11] G. Palla, I. Derényi, I. Farkas, and T. Vicsek, “Uncovering the overlap-
ping community structure of complex networks in nature and society,”
Nature, vol. 435, no. 7043, pp. 814–818, 2005.

[12] U. Raghavan, R. Albert, and S. Kumara, “Near linear time algorithm to
detect community structures in large-scale networks,” Physical Review

E, vol. 76, no. 3, p. 036106, 2007.
[13] Y. Ahn, J. Bagrow, and S. Lehmann, “Link communities reveal multi-

scale complexity in networks,” Nature, vol. 466, no. 7307, pp. 761–764,
2010.

[14] S. Gregory, “Finding overlapping communities in networks by label
propagation,” New Journal of Physics, vol. 12, p. 103018, 2010.

[15] D. Chen, M. Shang, Z. Lv, and Y. Fu, “Detecting overlapping communi-
ties of weighted networks via a local algorithm,” Physica A: Statistical

Mechanics and its Applications, vol. 389, no. 19, pp. 4177–4187, 2010.
[16] J. Leskovec, K. Lang, and M. Mahoney, “Empirical comparison of

algorithms for network community detection,” in ACM WWW 2010.
[17] N. Eagle and A. Pentland, “Reality mining: sensing complex social

systems,” Personal and Ubiquitous Computing, vol. 10, no. 4, pp. 255–
268, 2006.

[18] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi, “On the
evolution of user interaction in facebook,” in Proceedings of the 2nd

ACM SIGCOMM Workshop on Social Networks (WOSN’09), August
2009.

