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Abstract—Vaccination is one of the most effective ways to
protect people from being infected by infectious disease. However,
it is often impractical to vaccinate all people in a community due
to various resource constraints. Therefore, targeted vaccination,
which vaccinates a small group of people, is an alternative
approach to contain infectious disease spread. To achieve better
performance in targeted vaccination, we collect student contact
traces in a high school based on wireless sensors carried by
students. With our wireless sensor system, we can record student
contacts within the disease propagation distance, and then con-
struct a disease propagation graph to model the infectious disease
propagation. Based on this graph, we propose a metric called
connectivity centrality to measure a node’s importance during
disease propagation and design centrality based algorithms for
targeted vaccination. The proposed algorithms are evaluated and
compared with other schemes based on our collected traces. Trace
driven simulation results show that our algorithms can help to
effectively contain infectious disease.

I. INTRODUCTION

One of the most effective ways to prevent infectious disease
is to vaccinate the susceptible individuals. However, vaccinat-
ing all susceptible individuals is often impractical in many
cases due to resource constraints such as the limited vaccine
supply, especially during a new disease outbreak. Therefore,
targeted vaccination, which vaccinates a small group of people
in a community, is an alternative approach to contain infectious
diseases. The challenge is to identify the subset of people
whose vaccination will result, on average, in the maximal
reduction of disease spread, given the resource constraints.

There has been some research on targeted vaccination [1]
[2] [3]. However, these works are limited to theoretical study
based on synthetic networks such as random, homogeneous
or scale-free network, which may not reflect the real contact
patterns among people.

The problem of targeted vaccination has some similarity to
virus (worm) containment in the area of computer networks,
such as cellular networks [4] [5] and online social networks
[6] [7]. Based on cluster partition and community detection,
several schemes have been proposed to select patching nodes
for virus (worm) containment [5] [6]. The intuition behind
these schemes is to divide the network into different partitions,
and then contain the worms within the infected partition before
they spread out. More specifically, the nodes that separate

This work was supported in part by the National Science Foundation (NSF)
under grant number CNS-1421578.

network partitions are vaccinated in [5] and the neighbors of
overlapped nodes between two communities are vaccinated
in [6]. However, these schemes implicitly assume that all
nodes are eligible for vaccination, which is not true in disease
containment. Additionally, the worm propagation model in
cellular network or online social network is different from
that of infectious disease, and thus these schemes cannot be
directly applied to targeted vaccination.

Different from the aforementioned works, we collect student
contact traces in a high school based on wireless sensors
carried by students. Since the wireless signal strength degrades
as the communication distance increases, we can measure
the wireless signal strength and then infer when and where
students meet with each other. This information is important
for modeling the propagation of infectious disease. Many
respiratory infectious diseases (e.g. influenza) spread from
person to person by droplet transmission, requiring an infected
and a susceptible person to be in close physical contact
at a short maximum distance [8]. With our wireless sensor
system, we can find student contacts within such distance, and
construct a disease propagation graph to model the infectious
disease propagation. Then, targeted vaccination becomes a
problem of choosing important nodes in a graph to contain
disease propagation.

Based on the disease propagation graph, node centrality can
be used to measure its importance during disease propagation.
There are various centrality measures [9] such as degree
centrality, betweenness centrality and closeness centrality. Al-
though these centrality metrics can be used to measure the
importance of each node in disease propagation, they all have
some disadvantages when applied for disease containment.
For example, degree centrality only considers the connection
between a node and its neighbors, and thus is limited by its
local effect. Betweenness centrality measures the global effect,
but the node’s influence on its neighbors is treated equally as
the influence on those nodes far away, which is not appropriate
for disease propagation where nodes closer will be infected
with much higher possibility than those far away. Thus, we
propose a new metric called connectivity centrality, which
considers a node’s influence on all other nodes but assigns
more weight on those closer. Then, we design centrality based
algorithms for targeted vaccination. The proposed algorithms
are evaluated and compared with other schemes based on the
collected data trace. Trace driven simulation results show that



our algorithms can significantly reduce the infection rate.
The rest of this paper is organized as follows. Section II

describes our trace collection. Section III illustrates how to
build the disease propagation graph. Centrality based algo-
rithms for targeted vaccination are presented in Section IV,
and the performance of our algorithms is evaluated in Section
V. Section VI reviews related work and Section VII concludes
the paper.

II. TRACE COLLECTION

Most infectious diseases spread among people through
virus, which is transmitted by airborne infectious particles
or small respiratory droplets when two people contact within
a certain distance [8]. However, most existing traces do not
consider this limitation, and thus we collect our own traces in
a high school.

A. System Overview

We use Crossbow TelosB motes to collect human contacts
in a high school which has about 800 students. TelosB mote
has USB programming capability, an IEEE 802.15.4 radio,
and a low-power microcontroller with extended memory. Since
the wireless signal strength degrades as the communication
distance increases, we can measure the wireless signal strength
and then infer when and where students meet with each other.

There are two types of motes in our system: mobile motes
which are carried by students, and stationary motes which
are deployed in some fixed locations for localization purpose.
The mobile motes are placed in pouches, distributed to all the
students at around 7 am and received back at around 4 pm
on each school day. Each mobile mote will be carried by a
student around his (her) neck, and each mote has a unique ID.
The mote broadcasts a beacon every 20 seconds and keeps
listening to the wireless channel to record beacons from other
motes. The beacon includes mote type, mote ID, and its local
sequence number which is initialized to 0 and increased by
one after each beacon broadcast. The stationary motes are
deployed at certain locations such as classrooms, dining halls
and restrooms. Each stationary mote broadcasts beacons with
its mote type, ID and sequence number at an interval of 20
seconds with transmission power of -11 dBm. The sequence
number starts at 0 when the mote is powered on and increased
by one after each broadcast. During trace collection, all the
motes keep broadcasting beacons periodically and mobile
motes record beacons from others. Beacons from mobile
motes are recorded as contact information and beacons from
stationary motes are recorded for time and location reference.

We deployed the sensor system and collected student con-
tacts in two weeks during a flu season in March 2012. On
average, there are about 3.4 million contacts between mobile
motes on each day. Although student behaviors may vary
across weekdays due to different curriculum schedules in
different school days, on a weekly basis, the class schedules
are repeated and student behaviors are similar.
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Fig. 1: The disordered sequence numbers received from mobile mote
M can be synchronized and converted to global time by exploiting
the sequence numbers received from stationary mote S.

B. Design Issues

1) Disease Transmission Distance: The airborne droplets
fail to transmit from one person to another if their contact
distance is larger than 9 feet [8] [10]. From an epidemiological
standpoint, 9 feet is a critical distance for disease propagation
and thus we only need to collect contacts within this distance.
In a wireless system, the received signal strength (RSSI)
decreases as the distance between the sender and receiver
increases. Therefore, we can determine if a contact happens
within a specific range by checking if the corresponding RSSI
is above certain threshold for a given transmission power.

In many sensor network applications, nodes are supposed
to communicate with each other at the highest transmission
power level to reach larger coverage area and achieve higher
data delivery rate [11] [12]. However, our system is different,
where only contacts within 9 feet are useful and thus it
is not necessary to set mote with the highest transmission
power. Also, a TelosB mote only has two AA batteries as
its power supply. If it keeps working at the highest power
level, the battery will quickly run out. Therefore, we choose
a lower transmission power which does not affect the data
reception rate. Our preliminary experimental results show that
the transmission power of -16.9 dBm (power level 6 for TelosB
mote) is strong enough to ensure a high data delivery rate
within a distance of 9 feet. Under such transmission power
and distance, the RSSI of the received packet is around -80
dBm. Therefore, we set the transmission power of the mobile
mote as -16.9 dBm and a beacon from the mobile mote is
recorded only if its RSSI is larger than -80 dBm. With such
transmission power and RSSI threshold, we can ensure that
the contacts collected in our traces are within 9 feet.

2) Global Time: The local sequence number of the beacon
sent by a mobile mote is increased by one every 20 seconds. If
its starting time t0 is recorded, the global time tg of a contact
with sequence number l can be calculated as follows:

tg = t0 + 20s× l

However, as observed in the collected trace, most of the
mobile motes’ local sequence numbers do not increase mono-
tonically due to node reboots caused by various factors, such as
accidentally pressing reset button or loosening batteries. For
example, as shown in Figure 1, after sequentially receiving
beacons with sequence number 30, 31 and 32 from mobile
mote M , the mote receives another beacon with sequence



number 10 from M . Apparently, M suffered reboot and
reinitialized its local sequence number to 0 during this period.

Since it is difficult to know when the reboot happened, the
global time of the contact cannot be calculated merely by
using the local sequence number of the mote. In our system,
stationary motes are deployed in some fixed locations and
broadcast periodically. They will not suffer from node reboots
and will provide reliable sequence numbers, which can be used
to synchronize the local sequence numbers of the mobile nodes
and then to calculate the global time of the corresponding
contact. As shown in Figure 1, if a mote receives beacon
number 180 and 200 from the stationary mote S when it gets
beacon 31 and 11 from M , M ’s sequence number can be
synchronized with S. Then, the global time of the contact can
be calculated by using S’s starting time.

In order not to disturb students’ activities, the stationary
motes are deployed at night before the trace collection and
their starting times are recorded manually. In our system, each
mobile mote receives about 4,500 beacons from stationary
motes each day, which is enough for synchronizing the se-
quence number and calculating the global time. In this way,
the global time for each contact can be obtained.

3) Indoor or Outdoor: According to [13], the infecting
capability of infectious disease transmitted by droplets (e.g.,
influenza) varies in indoor and outdoor environment due to
different air circulation patterns. Thus, it is important to know
if the contact happens indoor or outdoor. The stationary motes
are not only used for contact synchronization, but also used
for indicating whether a contact happens indoor or outdoor.
In our system, stationary motes are carefully deployed to
cover the entire buildings in the school and thus if a mote is
indoor at some time, it will receive beacons from at least one
stationary mote at that time. Further, if a beacon is received
from a mobile mote and at the same time both the sender and
receiver have recorded beacons from some stationary motes,
we can infer that this contact happens indoor; otherwise, it
happens outdoor. Therefore, after synchronizing all traces, we
can discern whether a contact happens indoor or outdoor by
checking beacons received from the stationary motes.

III. DISEASE PROPAGATION GRAPH

The collected contacts can be used to construct the disease
propagation graph, which is used for modeling disease prop-
agation. As shown in Figure 2, the disease propagation graph
is an undirected weighted graph represented by G = (V,E),
where V is the set of vertices and E is the set of edges. Since
disease infection is bidirectional, G is an undirected graph. A
node u ∈ V represents a participant and an edge (u, v) ∈ E
exists only when there is contact between u and v.

For each edge (u, v), there is an associated weight w(u, v),
which denotes the disease propagation probability between
these two nodes, and it is related to the contact frequency
between them. For example, for two nodes that contact with
each other frequently (i.e., they spend a lot of time together), if
one node catches some infectious disease, the other one is most
likely to be infected. In addition, the probability of infection is
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Fig. 2: Disease propagation graph

related to where the node contact happens. According to [13],
infectious disease such as influenza, is more likely to spread
quickly in indoor environment than outdoor environment.

Considering both contact frequency and contact location,
the edge weight w(u, v) is calculated as follows:

w(u, v) =

∑T
t=0 η(u, v, t)r(u, v, t)

T

where

η(u, v, t) =

 1 the contact between u and v at time t
happens indoor;

η0 otherwise.

r(u, v, t) =

{
1 if there is a contact between u and v at t;
0 otherwise.

and T is a time period of the trace.
Since infectious disease is relatively inactive in outdoor

environment, η(u, v, t) is set to η0 (0 < η0 < 1) if the
contact happens outdoor and the value of η0 depends on the
characteristic of the specific disease.

Whenever there is a contact between two nodes, there is
some probability for the infectious disease to be transmitted
between them. This disease propagation graph shows how each
node contacts with others and how disease propagates among
them.

IV. CENTRALITY BASED TARGETED VACCINATION

In targeted vaccination, a small set of nodes are chosen
to get vaccine to mitigate disease propagation. With k vac-
cine, one naive solution is to randomly pick k nodes to be
vaccinated. However, this is not a good solution because
each node has different influence on others and thus plays
a different role during disease propagation. The importance
of each node on disease propagation can be measured by
centrality. In this section, we first introduce some well known
centrality metrics [9] and then propose a new metric called
connectivity centrality, based on which we design centrality
based algorithm for targeted vaccination.

A. Node Centrality

There are various centrality measures such as degree, be-
tweenness, and closeness, which are defined as follows.
Degree centrality: Let N(u) denote the set of u’s neighboring
nodes, then u’s degree centrality is:

Cd(u) =
∑

v∈N(u)

w(u, v)

Betweenness centrality: Let σst denote the total number of
shortest paths from node s to t; let σst(u) denote the total



number of shortest paths from node s to t that go through
node u, then u’s betweenness centrality is:

Cb(u) =
∑

s̸=u̸=t,s,t∈V

σst(u)

σst

Closeness centrality: Let d(u, v) denote the shortest path
distance between u and v, then node u’s closeness centrality
is:

Cc(u) =
|V | − 1∑

v ̸=u,v∈V

d(u, v)

Generally speaking, degree centrality measures how well a
node is connected with its neighbors; betweenness centrality
measures to what extent a node can connect two other nodes
through a shortest path; closeness centrality measures how
close a node is to others. Although these centrality metrics
can be used to measure the importance of each node in disease
propagation, they all have some disadvantages when applied
for disease containment. Degree centrality only considers the
connection between a node and its neighbors, and thus is
limited by its local effect. Betweenness centrality measures
the global effect, but the node’s influence on its neighbors
is treated equally as the influence on those nodes far away,
which is not appropriate for disease propagation where nodes
closer will be infected with much higher possibility than those
far away. By considering distance, closeness centrality treats
nodes differently based on their distance. However, since the
distance is simply added together, the path with longer distance
may dominate the result. Further, if nodes u and v are in
different partitions of a disconnected graph, d(u, v) = ∞.
According to its definition, Cc(u) will be 0 no matter how
close it is to other nodes. Thus, closeness centrality can only
be used in a connected graph.

B. Connectivity Centrality

To better measure how contagious an infected node is to
others, we propose a new centrality metric called connectivity
centrality, which is defined as follows:

Ccon(u) =
∑

v ̸=u,v∈V

c(u, v)

where

c(u, v) =

{ 1
d(u,v)h(u,v) if there is a path from u to v;
0 otherwise.

and h(u, v) denotes the number of hops between u and v along
the shortest path.

Connectivity centrality considers a node’s effect on others
and assigns more weight on nodes closer and within less hops.
This is because infectious disease is more likely to be transmit-
ted to nearby nodes within limited hops. Figure 3 illustrates the
difference between degree centrality, betweenness centrality
and connectivity centrality. Since closeness centrality can only
be used in a connected graph, we do not consider it here.
Except degree centrality, all other centralities are distance
based and the weight between any two neighboring nodes
represents their distance. However, in the disease propagation
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Fig. 3: An example of different centrality metrics in the disease
propagation graph. Node g has the highest degree centrality 0.5; both
node e and node f have the highest betweenness centrality 40; node
f has the highest connectivity centrality 0.595.

graph, the edge weight is assigned based on the disease propa-
gation probability. The larger the edge weight is, the closer the
nodes are and the smaller their distance is. Therefore, when
calculating distance based centralities, 1

w(u,v) is used as the
distance between two neighboring nodes u and v.

As shown in Figure 3, different node centralities (degree,
betweenness, connectivity) are used to remove one node to
contain the disease. Node g has the highest degree centrality.
However, it is not the best choice for vaccination since the
residual graph is still connected after its removal. Both node
e and node f have the highest betweenness centrality, and
removing either of them will separate the graph into two parts,
which can stop the disease spreading from one partition to
another. Comparing e and f , node f which has the highest
connectivity centrality is better, because its removal will also
remove edge (f, h) which has a larger edge weight and is
easier to transmit disease. In this example, node g only has
influence on its neighbors; node e is globally important; node f
is both locally and globally important. Therefore, connectivity
centrality is better than other centrality metrics for measuring
node’s influence on disease propagation.

C. Centrality Based Algorithm

Node centrality describes how a node connects with others.
Thus, nodes with higher centrality will be more likely to infect
others once they are infected and these nodes should be given
higher priority for vaccination. To find these nodes, one simple
solution is to sort them based on their centrality and select
the highest k nodes to be vaccinated. However, in disease
containment, not all nodes are eligible for vaccination. For
example, if a node has already been infected, vaccinating it
will not be effective. Also, some nodes may refuse to get
vaccinated due to concerns on the effectiveness of the vaccine
or potential side effects [14]. Therefore, after sorting, the first
k nodes which are eligible to get vaccinated are picked as the
targeted nodes.

D. Adaptive Algorithm

Although centrality based algorithm is simple, it may not
achieve the best performance since each node’s centrality is
calculated based on the original graph. However, once a node
is selected to be vaccinated, it will be removed from the
graph and change the graph topology. Thus, the centrality
value for the remaining nodes should be calculated based on
the updated graph. To address this problem, we propose an
adaptive centrality based algorithm. At each round, all nodes
are sorted based on their updated centrality values and the one



with the highest centrality is chosen as the candidate node.
If this node is qualified for vaccination, it is removed from
the graph, and the node’s centrality is recalculated based on
the updated graph; otherwise, the node with the next highest
centrality is chosen. This process is repeated until k nodes are
selected for vaccination. The pseudo code of the algorithm is
shown in Algorithm 1.

Algorithm 1: Adaptive Algorithm
Input : G = (V,E), k, node centrality C(·)
Output: Set of vaccinated nodes K
/* Set U contains the nodes that are not eligible for
vaccination. */

1 K = ∅, U = ∅;
2 if distance based centrality is used then
3 for (u, v) ∈ E do
4 w(u, v) = 1

w(u,v)
;

5 end
6 end
7 u = argmax

v∈V
C(v);

8 while |K| < k do
9 if u is qualified for vaccination then

10 K = K ∪ {u};
11 remove u from G to get G′;
12 G = G′;
13 u = argmax

v∈V \U
C(v);

14 else
15 U = U ∪ {u};
16 u = argmax

v∈V \U
C(v);

17 end
18 end

V. PERFORMANCE EVALUATIONS

In this section, we evaluate the performance of our algo-
rithms and compare them to other schemes.

A. Simulation Setup

The evaluations are based on our trace collected in a high
school. The first half of the trace is used as the training data
to build the disease propagation graph, and the second half is
used for performance evaluations.

At the beginning, a small group of nodes (1%) are randomly
chosen as the seed set of infection sources. The trace is
executed based on time units. At each time unit, the SIR
model [15] is used to simulate the infection process. In SIR,
each node has three states: S (Susceptible), I (Infected) and
R (Recovered). Suppose a node is initially at S state. By
contacting with an infected node, it will be infected with
probability β (called transmission probability) indoor and η0β
(η0 is fixed at 0.5 in our simulations) outdoor. If the node
is infected, it will move into state I. An infected node may
recover with a probability δ (δ is fixed at 0.0003 in our
simulations) at each time unit and goes back to state R. Nodes
who are in state R have already got immunization and will not
be infected again.

Our centrality based algorithms and adaptive centrality
based algorithm are compared with the overlapping commu-
nity detection based scheme (AFOCS) [6] and the cluster
based scheme (Cluster) [5]. Degree centrality, betweenness
centrality and connectivity centrality are used to implement
centrality based algorithm (denoted as Degree, Betweenness
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Fig. 4: Effect of vaccinating threshold α (β = 0.003)

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

In
fe

ct
io

n 
ra

te

Percentage of vaccinated nodes (%)

 

 

Betweenness
Degree
AFOCS
Connectivity
Cluster
Adaptive

(a) β = 0.002

0 5 10 15 20 25 30 35 40
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

In
fe

ct
io

n 
ra

te

Percentage of vaccinated nodes (%)

 

 

Betweenness
Degree
AFOCS
Connectivity
Cluster
Adaptive

(b) β = 0.004

Fig. 5: Effect of the disease transmission probability β (α = 2.5%)

and Connectivity respectively). Connectivity centrality is used
to implement the adaptive algorithm (denoted as Adaptive).
Closeness centrality is not used here since it does not work
when the graph is disconnected.

We use a Vaccinating Threshold α to control when the
targeted vaccination starts. It is measured as the percentage of
infected nodes in the network. This parameter represents the
time delay since the infectious disease starts propagating till it
is detected and a vaccine is generated. Once the percentage of
infected nodes reaches this threshold α, we start to distribute
vaccines to the chosen nodes.

B. Comparisons of Infection Rates

Figure 4 shows how the infection rate changes when the
percentage of vaccinated nodes increases with α = 2.5% and
10% respectively. As can be seen, for all schemes, fewer nodes
will be infected when more vaccines are distributed. Adaptive
outperforms other schemes under different α. When α = 2.5%,
with 20% of nodes vaccinated, the infection rate of Adaptive is
about 40%, but the infection rates of other schemes are higher
than 50%. For the centrality based algorithms, under different
α, Degree performs better than Betweenness since disease is
easier to transmit from the infected nodes to their neighbors
than to those far away. Connectivity performs better than
Betweenness and Degree, verifying that connectivity centrality
is better to measure node’s importance for disease propagation.

Comparing Figure 4a with Figure 4b, we can see that
AFOCS and Cluster perform worse than Connectivity when
α = 2.5%, but better when α = 10%. The reason is as follows.
If more nodes are infected before vaccination (i.e., α is larger),
these infected nodes are more likely to be clustered together
around the infection nodes. Since AFOCS and Cluster contain
the disease by isolating infected communities or clusters, they



0 200 400 600 800 1000 1200 1400
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
In

fe
ct

io
n 

ra
te

Time unit

 

 

Betweenness
Degree
AFOCS
Connectivity
Cluster
Adaptive

(a) α = 2.5%

0 200 400 600 800 1000 1200 1400
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

In
fe

ct
io

n 
ra

te

Time unit

 

 

Betweenness
Degree
AFOCS
Connectivity
Cluster
Adaptive

(b) α = 10%

Fig. 6: Infection rate vs. time (percentage of vaccinated nodes = 40%,
β = 0.003)

can perform better. However, their infection rate is still much
higher than the proposed Adaptive.

C. Effect of Transmission Probability

Figure 5 shows how the disease transmission probability
β affects the spread of disease. As can be seen, Adaptive
performs better than other schemes. For centrality based
algorithms, Connectivity outperforms Degree and Betweenness
under various β. Comparing centrality based algorithms with
Cluster, both Connectivity and Degree perform better than
Cluster when β = 0.002, but Cluster performs better than
Connectivity and Degree when β = 0.004. The reason is
as follows. Generally speaking, if the infected nodes are
uniformly distributed, centrality based algorithms will perform
better; if the infected nodes are clustered together, Cluster
performs better. With a lower β, nodes will be infected more
randomly, and then their distribution looks more uniform. With
a higher β, nodes with close connections will be infected
more easily and thus the infected nodes are more likely to
be clustered together.

D. Infection Rate vs. Time

Figure 6 shows how the infection rate changes over time
with α = 2.5% and 10%, respectively. The spread of the
disease can be divided into three phases. At the beginning,
the disease is slowly spread from the infection sources. Then,
it propagates widely and the infection rate increases quickly.
Finally, no more nodes will get infected and the infection rate
keeps stable. Adaptive achieves better performance than other
schemes as their infection rate is increased more slowly and
the infection rate is bounded under a much lower level.

VI. RELATED WORK

There have been lots of research on infectious disease
containment. In [1], Madar et al. studied vaccination strategies
under the SIR model for scale-free graphs. Hayashi et al. [2]
studied the case of growing networks and derived conditions
for extinction under random vaccination and targeted vaccina-
tion. However, these works are based on synthetic networks.

By extracting the communication patterns of mobile devices
based on a cellular network trace, Zhu et al. [5] proposed
cluster based algorithms for mitigating MMS (Multimedia
Messaging Service) worms. In [6], Nguyen et al. proposed
AFOCS to detect overlapping communities in a network and

selected the nodes in the boundary of the overlapped regions
as the patching targets to prevent worms from spreading out in
online social network. However, the worm propagation model
in cellular network or online social network is different from
that of infectious disease, and thus these schemes cannot be
directly applied to targeted vaccination.

VII. CONCLUSIONS

In this paper, we designed and deployed a system to collect
student contact traces in a high school based on wireless
sensors carried by students. With our wireless sensor system,
we can find student contacts within the disease propagation
distance, and construct a disease propagation graph to model
the infectious disease propagation. Then, we proposed the
metric of connectivity centrality to measure a node’s im-
portance during disease propagation and designed centrali-
ty based algorithms for targeted vaccination. Through trace
driven evaluations, we demonstrated that our algorithms can
help to effectively contain infectious disease and significantly
outperform other existing schemes.
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