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ABSTRACT
Convolutional Neural Networks (CNNs) have revolutionized the
research in computer vision, due to their ability to capture complex
pa�erns, resulting in high inferencing accuracies. However, the
increasingly complex nature of these neural networks means that
they are particularly suited for server computers with powerful
GPUs. We envision that deep learning applications will be even-
tually and widely deployed on mobile devices, e.g., smartphones,
self-driving cars, and drones. �erefore, in this paper, we aim to
understand the resource requirements (time, memory) of CNNs on
mobile devices. First, by deploying several popular CNNs on mobile
CPUs and GPUs, we measure and analyze the performance and
resource usage for every layer of the CNNs. Our �ndings point out
the potential ways of optimizing the performance onmobile devices.
Second, we model the resource requirements of the di�erent CNN
computations. Finally, based on the measurement, pro�ling, and
modeling, we build and evaluate our modeling tool, Augur, which
takes a CNN con�guration (descriptor) as the input and estimates
the compute time and resource usage of the CNN, to give insights
about whether and how e�ciently a CNN can be run on a given
mobile platform. In doing so Augur tackles several challenges: (i)
how to overcome pro�ling and measurement overhead; (ii) how to
capture the variance in di�erent mobile platforms with di�erent
processors, memory, and cache sizes; and (iii) how to account for
the variance in the number, type and size of layers of the di�erent
CNN con�gurations.
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1 INTRODUCTION
Deep learning has become the norm of state-of-the-art learning
systems, especially in computer version. Convolutional Neural
Networks (CNNs) have demonstrated impressive performance on
various computer vision tasks from classi�cation and detection to
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segmentation and captioning. A CNN consists of di�erent types of
layers (e.g., convolutional, pooling, fully connected), where each
layer performs certain transform on the input data and outputs the
data to the next layer. Di�erent CNNs for computer vision tasks
have been designed, from a few layers to a thousand layers. But,
the core of these networks naturally are the convolutional layers,
which consist of a set of learnable kernels that are convolved across
the length and width of the input image to produce output features.
�ere are several frameworks that support the training (forward
and backward pass) and inference (only forward pass) phases of
CNNs, including Ca�e [1], TensorFlow [6], Torch [8], �eano [7],
etc. All of these frameworks are designed and optimized for both
training and inference on computers with powerful GPUs.

However, we envision that deep learning applications will be
eventually and widely deployed on mobile devices. It is also ex-
pected that for computer vision tasks mobile devices will only
perform inference (forward pass), since training can be carried out
o�ine by computers with powerful GPUs. In the rest of this paper,
the terms “inference”, “test” or “forward pass”, mean the same.

Since both the frameworks, as well as the CNN models are de-
signed for computers with powerful GPUs, they may not e�ectively
and e�ciently work on mobile devices due to several factors, e.g.,
constrained memory and limited computing capability. CNNs for
vision tasks are very complex – for example, VGGNet [21] has
528M parameters and requires over 15G FLOPs (FLoating-point
OPerations) to classify a single image. Due to the large amount
of parameters and FLOPs, and the need to enable running these
CNNs on resource-constrained mobile devices, several works fo-
cus on accelerating the computing of CNNs on mobile devices by
compressing parameters [16, 23], by cloud o�oad [11], and by dis-
tributing computation to heterogeneous processors on-board [18].
However, complementary to these techniques, our goal is to model
the resource requirements of CNNs accurately. Motivation for this
is that our system can serve guidelines to decide when performance
optimizations, o�oading, etc. are required to successfully run ana-
lytics tasks on mobile devices. For instance, using the output of our
models, one could decide to run all the convolutional layers on the
mobile device while o�oading the fully connected layers to the cloud
so as to cut down on the memory requirement on the mobile device.
Although accurately modeling the resource requirements of CNNs
is very hard, we make progress towards achieving it.

�is paper overviews the work�ow of CNNs, shares the experi-
ences of deploying CNNs on mobile devices, gives the performance
measurements and analysis, and models the resource requirements



of the inference phase of the CNNs on mobile devices. In doing so
we face signi�cant challenges. (i) Pro�ling overhead: to measure
timing of GPU computations, we need to add a synchronization
call that waits for all the results to come back before recording the
time. As pointed out by [3], this causes an overhead, as some cores
may be idling while waiting for the rest of the cores to complete
the computation. We address this challenge by amortizing this
measurement cost by executing the computing task a large number
of times and averaging the running time. �is ensures that the
overhead per iteration is negligible. (ii) Di�erent types of layers:
CNNs are composed of various types of layers, so to model the
resource requirements of all the di�erent types is challenging. On
the other hand, since main computation of all these layers boils
down to matrix multiplication, we are able to model the di�erent
layers by abstracting out the details and focusing on the core of
the computation. (iii) How matrix multiplication scales: as the core
of the computation of CNNs, it is important to understand how
the computation scales with the sizes of matrices in terms of the
resource requirements. Due to the large number of combinations of
matrix sizes, this can be very challenging. However, by extracting
the matrix multiplication sizes of popular CNNs, we observe that
all of them result into a small set of matrix sizes and thus we are
able to accurately model them for di�erent mobile platforms.

Contributions: (i) We deploy the popular CNN models includ-
ing AlexNet [17], VGGNet [21], GoogleNet [22], and ResNet [12]
using the Ca�e framework [15] on mobile platforms (i.e., NVIDIA
TK1 and TX1), where the inference phase is run on both CPUs
and GPUs (§3). (ii) We measure and analyze the performance and
resource usage of the inference phase of these CNN models on a
layerwise granularity. Our �ndings point out the potential ways
of optimizing the computing of CNNs on mobile devices (§4). (iii)
We pro�le and model the resource requirements of CNNs. We also
build a modeling tool, Augur, which takes a CNN model descriptor
as the input and estimates the resource requirements of the CNN
so as to give insights on how well the CNN can be run on a mobile
platform without having to implement and deploy it (§5).

2 BACKGROUND
2.1 Overview of CNNs
Our goal is to model the resource requirements of the forward
pass of a CNN. �e CNN architecture is typically composed of
convolutional, normalization, and subsampling layers optionally
followed by fully connected layers. We overview these layers below,
as it lays the foundations for modeling the resource requirements.
Convolutional Layer: �e convolutional (CONV) layers form the
core of CNNs. �e parameters of this layer are a set of kernels
(weights) and biases learned during the training phase. During
the forward pass, kernels are convolved across the width, height,
and depth of the input, computing the dot product between the
kernel and the input and producing the output volume. Since
the main operation is dot product between the kernels and local
regions of the input, the forward pass of a CONV layer can be
formulated as a matrix multiplication. For the input volume, each
local region (a block of pixels) is stretched into a column of a matrix,
and the number of columns is the total number of local regions.
�e kernel is stretched into a column of another matrix, and the

number of columns is the number of kernels. Finally, the product
of the matrix multiplication is reshaped to the output volume with
a depth equal to the number of kernels. For example, the input of
AlexNet [227× 227× 3] (width × height × depth) is convolved with
96 kernels at size [11 × 11 × 3] and with a stride 4, and hence there
are 55 locations along both width and height. So, the matrix for the
input is [3025× 363], the matrix of the kernels is [363× 96], and the
produced matrix is [3025×96] and �nally reshaped to [55×55×96].

�eCONV layer is commonly implemented using thematrixmul-
tiplication function of Basic Linear Algebra Subprograms (BLAS) on
CPUs and cuBLAS [2] on CUDA GPUs for acceleration. However,
as many values in the input volume are replicated multiple times in
the matrix stretched from the input volume, it uses more memory
than the input volume itself.
Pooling Layer: �e pooling (POOL) layer commonly sits between
CONV layers and performs downsampling to reduce the spatial size
(width and height). �e pooling is performed on local regions with
the kernel size de�ned by a CNN model. �e most common pooling
operation in the state-of-the-art CNN models is max pooling. �e
pooling layer independently operates on the input volume without
parameters, and hence its implementation is simple.
Normalization Layer: Two types of normalization layers are com-
monly used in CNNs: local response normalization (LRN) and batch
normalization (BatchNorm). However, LRN’s role has been outper-
formed by other techniques, such as BatchNorm, and thus here we
only detail BatchNorm.

BatchNorm is introduced to reduce the internal covariant shi�
during training [14]. During test phase, BatchNorm normalizes the
input volume on each dimension (weight × height), e.g., for the i-th
dimension, as follows,

x̂ (i ) =
x (i ) − E[x (i )]√

Var[x (i )]
, (1)

where E[x (i )] and Var[x (i )] are learned during the training phase
for dimension i .
Fully Connected Layer: Each neuron in a fully connected (FC)
layer is connected to all activations in the previous layer. Due
to the full connectivity, there are a huge number of parameters,
which places heavy burden on memory usage and computation.
Recently, FC layers have fallen out of favor, e.g., the latest CNNs, i.e.,
GoogleNet and ResNet, only have one fully connected layer as the
classi�er. �is dramatically reduces the number of parameters, e.g.,
26MB parameters in GoogleNet while 233MB in AlexNet. Moreover,
it was found that FC layers of VGGNet can be removed with no
performance reduction. �erefore, it is anticipated that CNNs will
eliminate the use of FC layers. �e forward pass of FC layers is also
implemented as a matrix multiplication.

Besides these four layers, recti�ed linear unit (ReLU) layer that
applies an elementwise function, e.g., max(0,x ), on the input vol-
ume, is also commonly used in CNNs. However, ReLU is simple,
has no parameters, and does not change the size of input volume.
�us we skip the detail of ReLU layer.

2.2 Related Work
Although CNNs have been applied to various computer vision
applications on di�erent computing platforms, only a few works



Table 1: CNN models
Layer AlexNet VGGNet GoogLeNet ResNet
CONV 5 13 57 53
POOL 3 5 14 2
NORM 2 2 53
ReLU 7 15 57 49
FC 3 3 1 1

Concat 9
Scale 53
Eltwise 16
Total 20 36 140 227

Table 2: Timing benchmarks on AlexNet

Platform Layerwise Pass (ms) Total (ms) Forward Pass (ms)
CONV POOL LRN ReLU FC

TK1
CPU 318.7±0.2 6.1±0.1 103.8±0.0 4.6±0.0 186.3±0.1 619.8±0.2 619.5±0.2

51.42% 0.99% 16.74% 0.75% 30.05%

GPU 24.6±3.5 2.3±0.6 2.4±0.5 5.2±1.2 35.1±5.9 73.3±10.7 54.7±2.4
33.53% 3.15% 3.22% 7.11% 47.95%

TX1
CPU 66.9±5.3 7.6±0.0 172.4±0.3 2.4±0.0 644.7±5.3 894.3±4.8 892.7±2.3

7.48% 0.85% 19.28% 0.27% 72.09%

GPU 24.2±8.3 1.3±2.6 2.7±3.0 5.9±5.9 15.2±4.7 52.8±15.7 29.3±6.5
45.79% 2.51% 5.12% 11.23% 28.76%

FLOPs 666M 1M 2M 0.7M 59M 729M
91.36% 0.14% 0.27% 0.10% 8.09%

Table 3: Timing benchmarks on VGGNet

Platform Layerwise Pass (ms) Total (ms) Forward Pass (ms)
CONV POOL ReLU FC

TK1
CPU 7160.5±0.7 60.1±0.1 95.6±0.1 381.6±0.2 7697.9±0.6 7697.8±0.5

93.02% 0.78% 1.24% 4.96%

GPU 263.1±19.3 7.2±0.5 17.5±1.2 57.6±0.5 347.6±20.1 326.7±2.1
75.68% 2.06% 5.03% 16.58%

TX1
CPU 1952.9±12.2 71.3±1.5 52.5±1.9 747.7±24.9 2824.6±23.2 2809.1±10.6

69.14% 2.52% 1.86% 26.47%

GPU 136.3±5.4 3.4±1.6 9.9±4.9 32.8±1.3 184.2±7.4 175.3±2.0
73.98% 1.84% 5.35% 17.82%

FLOPs 15360M 6M 14M 124M 15503M
99.08% 0.04% 0.09% 0.79%

Table 4: Memory of CNN models on platforms (MB)
Type/Platform AlexNet VGGNet GoogleNet ResNet

Weights & Biases 233 528 26 97
Data 8 110 53 221

Workspace 11 168 46 79

TK1 CPU 324 972 161 409
GPU 560 1508 196 533

TX1 CPU 362 1013 200 453
GPU 589 1537 226 562

consider running CNNs on mobile devices, which we envision to
be a signi�cant future area for the deployment of deep learning
applications.

Among these works, many focus on accelerating the computing
of CNNs, e.g., by compressing parameters [16, 23], by cloud o�oad
[11], and by distributing computation to heterogeneous processors
on-board [18]. Some consider reducing the memory usage to be�er
�t mobile devices while maintaining high inference accuracy, e.g.,
[10, 13]. �e resource bo�lenecks of running CNNs on mobile
devices are preliminarily investigated in [19]. Di�erent CNNs are
benchmarked in [9], but it does not consider how to model the
resource requirements of CNNs.

While CNNs grow from a few layers to a thousand layers, the
computational capability of mobile devices continues to improve.
As a result, di�erent mobile devices perform di�erently on di�erent
CNNs, and hence custom optimization and o�oading may or may
not be needed. It depends on whether and how e�ciently a CNN
can be run on a given mobile platform. �is question motivates our
work.

3 MEASUREMENT SET-UP
To understand the resource requirement of the forward pass of
CNNs, we deployed several CNN models on two mobile platforms
using the popular deep learning framework – Ca�e.
Platforms: Although some frameworks (e.g., Ca�e, Torch) can
run on Android and iOS, they do not support GPU acceleration on
o�-the-shelf mobile devices, such as smartphones or tablets. To
understand the performance of CNNs on both mobile CPUs and
GPUs, in this paper, we focus on two developer kits for low power
edge devices – NVIDIA TK1 and TX1.

TK1 is equipped with a 2.3GHz quad-core ARM Cortex-15A 32bit
CPU, 192 CUDA cores Kepler GPU, and 2GB DDR3L RAM. TX1
is more powerful and has a 1.9GHz quad-core ARM Cortex-A57

64bit CPU, 256 CUDA cores Maxwell GPU, and 4GB LPDDR4 RAM.
�e system-on-chip (including CPU and GPU) of TK1 and TX1
also appears in many o�-the-shelf mobile devices, such as Google
Nexus 9 and Pixel C. However, none of these devices are enabled
to support CUDA, on which deep learning frameworks are built
for GPU acceleration. �us, for ease of experimentation we choose
NVIDIA TK1 and TX1, the results of which should indicate the
performance of CNNs on mobile devices.
Framework: �ere are several frameworks for deep neural net-
works. As mentioned before, most of the frameworks use BLAS
on CPU and cuBLAS on GPUs for the CNN computations and thus
show similar performance. In this paper, we use the popular Ca�e
framework, where the choice of BLAS is OpenBLAS [5].
CNNModels: For the measurement, we consider the most popular
CNNmodels including AlexNet, VGGNet (VGG-16), GoogleNet, and
ResNet (ResNet-50). Although the architectures of these models
are quite di�erent, from several layers to more than one hundred
layers and from regular stacked layers to branched and stacked
layers, they are mainly built on the basic layers of CNNs. Table 1
shows how many these layers each model contains.

4 INITIAL MEASUREMENT STUDY
In this section, we investigate the resource requirements and bot-
tlenecks of running several well known CNN models on mobile
platforms.

4.1 Timing
First, we measure the timing of each model on di�erent platforms
using CPU and GPU in terms of (i) complete forward pass: i.e.,
timing is measured for the entire forward pass and (ii) as summation
of individual layer times. We also calculate the number of FLOPs
for each model and each type of layer.



Table 5: Timing benchmarks on GoogleNet

Platform Layerwise Pass (ms) Total (ms) Forward Pass (ms)
CONV POOL LRN ReLU Concat FC

TK1
CPU 755.3±0.2 68.8±0.1 214.3±0.2 22.8±0.0 2.0±0.0 2.7±0.0 1066.2±0.3 1065.6±0.2

70.84% 6.45% 20.10% 2.14% 0.19% 0.26%

GPU 186.9±45.0 20.6±4.9 6.5±1.5 35.3±9.9 13.0±4.4 2.4±0.8 269.3 ±65.6 167.0±44.3
69.40% 7.65% 2.40% 13.10% 4.81% 0.90%

TX1
CPU 174.4±3.6 89.9±0.2 349.4±0.6 9.5±0.1 1.7±0.1 5.7±0.0 630.9±3.5 637.9±14.7

27.64% 14.24% 55.38% 1.50% 0.36% 0.90%

GPU 165.9±48.8 18.5±11.2 3.3±2.3 49.5±31.2 15.4±9.8 1.2±1.1 258.1±89.8 143.9±59.2
64.28% 7.16% 1.28% 19.16% 5.96% 0.46%

FLOPs 1585M 13M 3M 3M 1M 1606M
98.80% 0.80% 0.20% 0.20% 0.06%

Table 6: Timing benchmarks on ResNet

Platform Layerwise Pass (ms) Total (ms) Forward Pass (ms)
CONV POOL BatchNorm ReLU Scale Eltwise FC

TK1
CPU 1830.4±0.4 8.8±0.0 97.1±0.1 64.0±0.1 42.0±0.1 24.8±0.1 5.4±0.0 2072.7±0.4 2072.2±0.3

88.31% 0.42% 4.68% 3.09% 2.03% 1.20% 0.26%

GPU 245.8±16.3 5.5±0.6 249.5±11.6 38.7±2.0 76.0±3.3 47.0±2.7 3.9±0.1 673.0±33.4 149.4±4.9
36.53% 0.81% 37.08% 5.75% 11.29% 6.98% 0.58%

TX1
CPU 362.3±5.4 13.7±0.2 83.5±0.3 33.2±0.1 31.9±3.6 20.4±4.2 22.2±0.1 567.6±7.6 566.8±9.7

63.83% 2.41% 14.7% 5.86% 5.62% 3.59% 3.92%

GPU 279.4±42.6 3.0±2.7 198.1±36.8 63.6±31.3 79.8±24.2 34.8±12.9 1.8±2.4 664.7±116.5 104.4±14.0
42.03% 0.45% 29.80% 9.57% 12.01% 5.24% 0.27%

FLOPs 3866M 2M 32M 9M 11M 6M 2M 3922M
98.59% 0.05% 0.81% 0.23% 0.27% 0.14% 0.05%

AlexNet has the least number of layers among these models and
indeed requires the least amount of computation in terms of FLOPs,
i.e., 729M. As shown in Table 2, on the CPU of both TK1 and TX1, the
summation of layerwise timing perfectly matches with that of a full
forward pass, which are about 600ms (on TK1) and 900ms (on TX1).
Surprisingly, although TX1 has a more powerful CPU, the forward
pass on TX1 is slower than TK1. �e CONV layers on TX1 run much
faster than on TK1 (more than 4x), but the FC layers are much
slower (more than 3x). Since the basic computation of both CONV
and FC is matrix multiplication, the results seem contradictory
at �rst. However, we investigate and explain the reasons for the
behavior below.

First, even though the clock is slower on TX1 compared to TK1,
i.e., 1.9 GHz vs. 2.3 GHz, TX1 runs more instructions per clock cycle
compared to TK1 (3 vs. 2) and hence the performance of TX1 CPU
is expected to be be�er than TK1 CPU as we see for the CONV
layers. Second, FC layers have many more parameters than the
CONV layers. �erefore, FC layers are bo�lenecked by the memory
whereas CONV layers are compute bound. �ird, the L1 data cache
size is 32 KB on both and L2 cache is larger on TK1 compared to
TX1. Even if cache size is same on both – because the address is
longer on TX1 (64 bit vs. 32 bit), more memory is used up for the
addressing and we have lesser memory available to save the data
itself on the cache. �is means that we need to fetch data from
RAM to the cache more o�en while executing the FC layers on
TX1 due to the large number of parameters which causes the slow
down.

GPUs can signi�cantly accelerate the computation of a CNN and
thus improve the performance over CPUs. More advanced TX1GPU
outperforms TK1 GPU as expected. However, we face one challenge:
the summation of layerwise timing does not match the timing of
the full forward pass on GPUs. �e reason for the mismatch is
that CUDA supports asynchronous programming. Before time

measurement, an API (cudaDeviceSynchronize) has to be called
to make sure that all cores have �nished their tasks. �is explicit
synchronization is the overhead of measuring time on the GPUs.
�erefore, the sum of layerwise timing on GPUs is longer than a
full forward pass.
VGGNet has more than 2x CONV layers than AlexNet (Table 1).
However, the number of operations is 20x that of AlexNet because
VGGNet uses much larger feature maps. While other results follow
similar pa�ern as AlexNet, the throughput of both CPU and GPU
on VGGNet is higher than on AlexNet. For example, the throughput
of TK1 CPU on AlexNet is 1 GFLOPS (GFLOPs per Second) and of
VGGNet is 2 GFLOPS. �is is mainly because both CPU and GPU
have be�er throughput on matrix multiplication with larger size.
GoogleNet hasmore than 50 CONV layers, manymore thanAlexNet.
However, the CONV layers have only two times more FLOPs than
that of AlexNet. �e main reason is that the size of the kernels
and feature maps is small, which dramatically reduces the number
of operations. Similar to AlexNet, GoogleNet also employs LRN
that signi�cantly a�ects the performance on CPU for both TK1 and
TX1. For example, it takes more than 55% of total time on TX1 CPU.
GoogleNet has a layer, named Concat, that does not involve any
computation, but concatenates the outputs from previous layers,
thus involving memory operations only.

�e di�erence between layerwise timing and full forward pass
on GoogleNet is much larger than AlexNet and VGGNet as shown
in Table 5. GoogleNet has many more layers than AlexNet and
VGGNet and thus much more measuring overhead on GPUs. �e
measuring overhead may be larger than the compute time when the
computation of a layer does not cost much time, e.g., ReLU layers.
Due to this measurement artifact, in Table 5, ReLU layers cost more
time on GPUs than CPUs. �is is a motivation for us to devise
measurement techniques that can overcome these measurement
overheads as we see later in §5.



ResNet has more than two hundred layers. ResNet includes Batch-
Norm, Scale, and Eltwise that are not commonly used by other
models. �ese layers are not expensive in terms of FLOPs as shown
in Table 6. We observe that the computation of Scale and Eltwise
costs more on GPUs than CPUs, which is again due to the mea-
surement overhead on GPUs as discussed above. Interestingly,
although ResNet has more FLOPs (2x) than GoogleNet, a full for-
ward pass is faster than GoogleNet on TX1. �is is because LRN of
GoogleNet is very expensive: (55% of total time) on TX1 CPU. More-
over, GoogleNet has more CONV layers and the underlying matrix
multiplication is smaller than that of ResNet. As GPU throughput
is higher on matrix multiplication with larger size, ResNet is faster
than GoogleNet on TX1 GPU.

4.2 Memory
�e memory requirement to run a CNN comes from three major
sources: (i) the memory that holds the parameters of the CNN;
(ii) the memory that stores intermediate data of the CNN; and (iii)
the workspace for computation. A majority of the CNN param-
eters come from CONV and FC layers (i.e., weights and biases).
Intermediate data is the output of each layer (i.e., the input of next
layer), e.g., feature maps. Some types of layers require additional
space to perform computation, e.g., on CONV layers, the memory is
needed to hold the matrix stretched from the input data for matrix
multiplication. �e workspace memory is mostly consumed by the
matrix multiplication of CONV layers. �e NVIDIA CUDA Deep
Neural Network library (cuDNN) [4] can reduce the workspace
by sacri�cing the speed of computing on GPUs. However, as the
workspace is not the most signi�cant part, cuDNN cannot reduce
the memory usage of CNNs signi�cantly.

Table 4 shows the memory requirement of weights and biases of
CONV and FC layers, intermediate data, and workspace of CONV
layers for each CNN – by parsing the model descriptor (e.g., a
prototxt �le in Ca�e). Table 4 also gives the measured memory
usage of Ca�e, running each CNN on these platforms. One can
see that deeper CNNs (from AlexNet to ResNet) may not require
more memory, especially for GoogleNet, which requires the least
memory among them. Memory usage on TX1 is more than TK1,
because TK1 is running a 32-bit OS while TX1 is running a 64-bit
OS, which incurs more memory usage for the framework itself.

To speed up the computation of CNNs, all memory should be
allocated beforehand and not released during the computation.
Although existing frameworks (e.g., Ca�e1) follow this rule, they
are designed for training and testing (scoring) on workstations with
powerful GPUs, and thus not quite suitable for mobile devices in
terms of memory management.
Uni�edMemoryArchitecture: Unlikeworkstations2 whereGPUs
have their dedicated memory, mobile platforms usually have a uni-
�ed memory architecture, where GPU shares system memory with
CPU. On workstations, in the current implementation of Ca�e, data
is transferred to and from the memory of GPU for access, which

1Ca�e allocates the memory for intermediate data on demand (lazily) during the �rst
run, and thus it takes longer time than later runs.
2Although GPUs on workstations can also directly access host memory over PCIe, e.g.,
CUDA kernels, reading data over PCIe is limited by PCIe bandwidth (up to 32GB/s)
which is much slower than reading data from GPU memory (limit 200GB/s).

is e�cient on workstations. However, on united memory architec-
ture, e.g., TK1 and TX1, memory transfer from CPU to GPU simply
generates a redundant data copy on system memory. As shown
in Table 4, on both TK1 and TX1, the memory usage on GPU is
always more than CPU, and the additional memory is actually used
to hold a redundant copy of the parameters of each CNN (mostly
weights and biases). For example, running AlexNet on TK1 GPU
takes 560MB memory, which is 236MB more than TK1 CPU, while
weights and biases of AlexNet are 233MB in total. �is also stands
for other CNNs.

Mobile GPUs can directly access data by mapping host memory
without degrading performance and incurring memory transfer
overhead (i.e., zero-copy memory). Existing frameworks, including
Ca�e, Torch, and�eano, do not take into consideration the uni�ed
memory architecture for mobile platforms. On the contrary, the
uni�ed memory architecture can be exploited to design a tailored
computing framework for mobile devices. (i) We can eliminate
memory transfers between CPU and GPU. (ii) We can compute a
CNN in the most e�cient way; i.e., each layer can be executed on
the most e�cient unit, switching back and forth between GPU and
CPU, without incurring additional memory transfer overhead.

4.3 Analysis
FLOPs. As the throughput of both CPU and GPU is higher on
the CNN with more FLOPs and a signi�cant amount of memory
operations are involved in a CNN computation, FLOPs cannot ac-
curately re�ect the compute time of a CNN. For example, ResNet
is faster than GoogleNet on GPUs, though it involves more FLOPs.
�erefore, estimating the compute time of CNNs directly from their
FLOPs is not feasible.
CONV and FC Layer. �e computation of CONV and FC layers in
most models accounts for a majority of FLOPs. �erefore, can one
measure these layers instead of the entire network? However, this
approach encounters other di�culties, i.e., layerwise measuring
overhead on GPUs, and we have no way to know the exact overhead
for each layer, which is hidden by GPUs.
Matrix Multiplication. �e core of CONV and FC layers are
matrix multiplications. �erefore, rather than going into the details
of each of the individual layers, if we are able to extract the matrix
multiplication part of the layer, we will be able to accurately capture
the resource requirements of these layers.

5 AUGUR
We aim to build a modeling tool that can estimate the resource
requirements of any given CNN descriptor on speci�c mobile plat-
forms without implementation and deployment. �is way, we can
take the costs into consideration during the design of a CNN. �is
is critical when designing CNNs for resource-constrained mobile
devices.

5.1 Pro�ling
�e basic idea is simple. We �rst �nd the matrix multiplications
that form the core of the CNN computation. �en we measure
their performance based on the BLAS and cuBLAS libraries, which
are commonly used for matrix multiplications on CPUs and GPUs
respectively.
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Figure 1: Matrix multiplication and for-
ward pass of AlexNet, VGGNet, GoogleNet,
and ResNet on mobile platforms.
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Figure 2: Matrix multiplication on TK1 CPU with varying n,m, and k .
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Figure 3: Matrix multiplication on TX1 CPU with varying n,m, and k .

Extract matrix sizes: To �nd all matrix multiplications and their
sizes, we need to parse the descriptor of a CNN. �e dimension of
input (e.g., images and feature maps) and network parameters (e.g.,
convolution kernels) determines two matrix sizes (that are to be
multiplied) at a CONV or FC layer. As the dimension of feature
maps can be changed by some other layers, e.g., POOL layers, we
need to trace the dimension of feature maps layer by layer. However,
this can be easily done by parsing the parameter se�ings at each
layer, such as zero-padding (P ), stride (S), the number of output
feature maps (N ). For instance, in case of a CONV layer, let I denote
the spatial dimension of the input feature map,O denote the spatial
dimension of the output feature map, K denote the 3D volume of
the convolution kernels. �en, we have:

Ow = b(Iw − Kw + 2P )/Sc + 1
Oh = b(Ih − Kh + 2P )/Sc + 1.

�en, the matrix multiplication at the CONV layer is [(Ow ·Oh ) ×
(Kw · Kh · Kd )][(Kw · Kh · Kd ) × N ].
Mitigate measurement overhead: Layerwise timing measure-
ment incurs heavy overhead on GPUs and causes a large deviation
from a full forward pass. Moreover, the overhead is not �xed and
varies over each measurement. As illustrated in Table 5 and 6, the
measurement overhead (the di�erence between the sum of layer-
wise measurements and full forward pass) of GoogleNet (131 mea-
surements) on TX1 GPU is 128 ms, while the overhead of ResNet
(227 measurements) is 595 ms. �erefore, we need a way to mitigate
the overhead for accurate timing of matrix multiplications.

Timing measurements on GPUs can only been recorded a�er
all cores �nish their tasks. In a full forward pass, timing is only
recorded at the last layer. �erefore, a core may be assigned with
the computation of following layers and thus it can continuously
perform the computation without synchronization. For example,

a�er �nishing the multiply-add operations for the matrix multipli-
cation at a CONV layer, a core can continue to calculate the max
function of next ReLU layer on the output of multiply-add opera-
tions. If layerwise timing is recorded, all cores have to wait until all
multiply-add operations of the CONV layer have been completed.

�e idea of mitigating the measurement overhead is simple. To
benchmark a matrix multiplication, we keep GPUs iteratively run-
ning the matrix multiplication in a way that GPU cores can contin-
uously perform multiply-add operations without synchronization,
before recording the end time. �en, the measurement overhead is
amortized over all the iterations, giving accurate timing estimates.
When the number of iterations is large enough, the overhead is
negligible. In our experiments we measure the timing of a large
number of computing iterations on a matrix multiplication and use
the averaged value of each iteration as the compute time of the
matrix multiplication.
Fraction of forward pass spent by matrix multiplication: In
Figure 1, we study the fraction of forward pass time spent by matrix
multiplication (matmul) operations. We do so, by extracting the
matmul operations, measuring them, and then comparing with
the full forward pass measurement. Note that due to the above ex-
plained averagingmethodology, measurement overhead for matmul
operations in this section is negligible.

First, as seen in Figure 1a, matmul operations on TK1 CPU take
a large portion of forward pass time – 79.61%, 96.01%, 70.15%, and
91.16% for AlexNet, VGGNet, GoogleNet, and ResNet, respectively.
Note that this also approximates the time taken by CONV and
FC layers from Table 2, 3, 5, and 6 (81.47%, 97.98%, 71.1%, and
88.57%). Second, the trend is similar on TX1 CPU, as depicted in
Figure 1b, except GoogleNet (only about 25% time spent on matmul
operations), which is caused by the particular combination of the
architecture of TX1 CPU and GoogleNet as discussed in §4.1. �ird,
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Figure 8: Timing pro�ling of VGG19M.

the trend on TK1 and TX1 GPUs is similar to the trend on TX1 CPU,
as seen in Figure 1c and 1d. One thing to note is that while matmul
operations of GoogleNet only take about 20% of the total time of
forward pass, our previous measurement in Table 5, showed that
CONV and FC layers take about 60% of the total forward pass time.
We believe this is because the matmul operations are run without
taking into account dependencies, whereas, GoogleNet consists of
inception components, each of which has four branches of CONV
layers in parallel. Before proceeding to next inception component,
all four branches of CONV layers have to be competed. How to
handle such dependencies is part of our future work.

In summary, for most cases, matmul operations take a large
proportion (more than 60%) of the compute time of a CNN on
mobile platforms. �us, we can predict matmul time, to be able to
approximately estimate the compute time of a CNN.

5.2 Modeling
So far, we have exactly measured matmul time. In this section, we
aim to model this time, to be able to predict the compute time, just
from the matrix sizes. To do so, we benchmark several matrix sizes,
as explained below to understand the relationship between the size
of the matrices and the compute time.

Given the matmul of [n×k] and [k ×m] (the number of FLOPs is
n×m×k) performed by a CONV layer, n is the number of kernels, k
is the size of a kernel in 3D (width × height × depth, where depth is
the number of input feature maps), andm is the spatial size (width
× height) of output feature maps.

CNNs follow special rules on these parameters of CONV layers.
�e number of kernels n is usually a multiple of 16, commonly from
32 to 512. �e spatial size of a kernel is commonly 12, 32, 52, 72,
or 112. �e depth of a kernel is usually the number of kernels in
the previous CONV layer and hence also a multiple of 16; except
the �rst CONV layer, where the depth is the number of channels of
the input image, typically equal to three. �e spatial size of output
feature maps of a CNNm gradually reduces; it is common to have

2242, 1122, 562, 282, 142, or 72, though AlexNet has slightly di�erent
ones, i.e., 552, 272 and 132. Based on these typical parameter se�ings,
we carried out experiments on matmul with varying n,m, and k .
�e FC layer is currently used in CNNs only as a classi�er (e.g.,
in GoogleNet and ResNet) and thus its compute time is negligible
compared to the forward pass. �erefore, we do not consider the
size of matrices for FC layers in the modeling.

Simple linearity on CPU: Figure 2 and 3 illustrate the per-
formance of matmul on TK1 CPU and TX1 CPU, respectively.
�e se�ings of n, m, and k are: n = [32, 64, 96, 128, 256, 512],
m = [72, 142, 282, 562, 1122], and k = [64 × 12, 64 × 32, 128 ×
32, 64 × 52, 256 × 32, 64 × 72]. In each �gure, we �x one of three
parameters and vary other two; data points are shown as small
circles; black circles are labeled with coordinates to highlight the
se�ing of varying parameters.

From Figure 2a, 2b, and 2c, it is observed that the compute time of
matmul on TK1 CPU scales linearly with n,m, and k . �e linearity
can also be observed on TX1 CPU as depicted in Figure 3a, 3b, and
3c. �us, we have a linear model per CPU device, which predicts
the matmul time, given the matrix sizes.

Complex linearity on GPU: Figure 4 and 5 illustrate the per-
formance of matmul with varying se�ings of n,m, and k on TK1
GPU and TX1 GPU, respectively. �e compute time of matmul on
GPUs exhibits more complex relationship with n,m, and k .

Figure 4a mainly depicts the e�ect of n, which is bipartite. For all
the se�ings ofm, the compute time has a monotonic relationship
with n from n = 32 to 128, except n = 96 which incurs even longer
compute time thann = 128, while, fromn = 128 to 512, the compute
time exhibits a perfect linear relationship with n. Similar result is
also found on TX1 GPU as shown in Figure 5a. Although TX1 GPU
has more CUDA cores (256 compare to 192 cores in TK1 GPU) and
generally computes matmuls faster than TK1 GPU, it also exhibits
this pa�ern at n = 96. �is artifact is related to the algorithm that
determines how the CUDA cores compute matmul in parallel. Since
cuBLAS is not an open-source library, it is hard to trace the exact



reason. However, it is indicated [2] that matmul works best if n and
m are multiples of 128 on Maxwell architecture (TX1 GPU) and if
n is multiple of 256 andm multiple of 192 on Kepler architecture
(TK1 GPU). �is may explain why it behaves di�erently when n is
small.

For given values of n andm, the compute time linearly increases
with k on TK1 GPU and TX1 GPU as depicted in Figure 4b and
5b, respectively. While the compute time increases with m on
both TK1 GPU and TX1 GPU as depicted in Figure 4c and 5c, the
e�ect ofm is tripartite. �e compute time has three separate linear
relationships with k (di�erent coe�cients), e.g., from 72 to 282, from
282 to 562, and from 562 to 2242 on TK1 GPU, as highlighted by
di�erent regions in Figure 4c. In each such region, the compute
time on di�erent values of k linearly scales withm at mostly the
same coe�cient. Moreover, in the middle region (i.e., between 282
and 562 in Figure 4c and between 142 and 282 in Figure 5c, the
compute time increases withm slower than other two regions. �is
is especially true on TX1 GPU, where the region is much more
�at and tends to plateau. �is region should be the transition area,
where cuBLAS adopts di�erent schemes based onm and the number
of CUDA cores to assign the workload of matmul to CUDA cores.
�e transition area is di�erent on TK1 GPU and TX1 GPU, mainly
because they have di�erent number of CUDA Cores.

Based on the characteristics discussed above, we are able to
model the compute time of matmul on a speci�c GPU, though we
need more data points than that on a CPU.

5.3 Accuracy of Augur
Based on the measurement, pro�ling, and modeling of CNNs on mo-
bile devices, we built the modeling tool, Augur, which estimates the
compute time and memory usage for any given CNN. Augur �rst
parses the descriptor of a CNN. Based the type and se�ing of each
layer, it calculates the minimal memory needed to run the CNN.
�e memory includes data, parameters, and workspace. �en, Au-
gur extracts matmuls from the computation of the CNN. Based on
the models of TK1 and TX1 on matmul, i.e., the linear �ts obtained
from Figure 2 and 4 for TK1, and Figure 3 and 5 for TX1, Augur cal-
culates the compute time of individual matmuls and then uses their
summation as the estimate of the compute time of the CNN.

To verify the accuracy of Augur, we model two CNNs (i.e., NIN
[20] and VGG19M3) and compare the estimates to the measured
memory usage and compute time using Ca�e. Figure 6 depicts
the memory usage of NIN and VGG19M on di�erent processing
units. �e estimate of memory usage is always less than the actual
usage, because the estimate does not take into account the memory
usage of Ca�e itself, which is framework-dependent. However, it
is easy to incorporate that if a speci�c framework is targeted to
perform the CNN computation. Note that the estimate of Augur is
accurate on the memory usage of data, parameters, and workspace
as discussed in §4.2.

Figure 7 and 8 evaluate the accuracy of Augur’s compute time
estimation of NIN and VGG19M, respectively. From Figure 7 and
8, we observe that the estimate based on only matmul can approx-
imate the compute time of NIN and VGG19M on both CPUs and
3VGG19M is a modi�ed version of VGGNet with more CONV layers. �e FC layers
in the original VGGNet are replaced by a CONV layer and a POOL layer to reduce
memory usage.

GPUs, with more than 78% accuracy for all the cases. Since matmul
generally takes a larger proportion of the compute time on CPUs
than on GPUs as discussed in §4.1, the estimate on CPUs (up to
94%) is closer to the actual compute time than on GPUs (up to
84%). Moreover, more powerful processing unit can perform mat-
mul faster, but the speed up is not the same across all operations.
�erefore, the matmul of a CNN takes a smaller proportion of the
compute time on a more powerful processing unit. �is explains
why the estimate on TK1 CPU (or TK1 GPU) is more accurate than
TX1 CPU (TK1 GPU) for the same CNN.

In summary, Augur can estimate whether and how e�ciently
a CNN can be run on mobile devices before any deployment. It
can also help the design of CNNs for resource-constrained mobile
devices. When designing a CNN model using Augur, designers can
estimate the resource usage and compute time without implemen-
tation and deployment and tune the model to satisfy their speci�c
needs.

6 DISCUSSION
Augur can be extended to support additional mobile platforms by
simply pro�ling matrix multiplication operations on them. Matrix
multiplications of a CNN take most computation (more than 90% of
FLOPs from Table 2, 3, 5, and 6), which commonly takes a dominant
proportion of the compute time. �us, matrix multiplication is
currently exploited by Augur to estimate the compute time of a
CNN. To obtain a more precise estimate, additional factors need
to be taken into consideration, e.g., memory operations and CNN
architectures (stacked or branched). Augur will be enhanced with
these features and this will be our future work.

Moreover, we observe that a framework customized for running
CNNs on mobile platforms is highly desired. �e framework should
be optimized for performing the test phase of CNNs and tailored
for the characteristics of mobile platforms, e.g., the uni�ed memory
architecture.

7 CONCLUSION
In this paper, we aim to model the resource requirements of CNNs
on mobile devices. By deploying several popular CNNs on mobile
CPUs and GPUs, we measured and analyzed the performance and
resource usage at a layerwise granularity. Our �ndings pointed
out the potential ways of optimizing the performance of CNNs on
mobile devices. As matrix multiplications form the core computa-
tions of a CNN, we pro�led and modeled matrix multiplications
on mobile platforms. Based on the measurement, pro�ling, and
modeling, we built Augur that can estimate the compute time and
memory usage of the CNN so as to give insights on whether and
how e�ciently the CNN can be run on a mobile platform without
implementation and deployment. �erefore, it is a power tool that
helps the design of CNNs for resource-constrained mobile devices.
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