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Abstract—The vast adoption of mobile devices with cameras
has greatly assisted in the proliferation of the creation and distri-
bution of videos. For a variety of purposes, valuable information
may be extracted from these videos. While the computational
capability of mobile devices has greatly improved recently, video
processing is still a demanding task for mobile devices. Given
a network consisting of mobile devices and video-clouds, mobile
devices may be able to upload videos to video-clouds, which
are more computationally capable for these processing tasks.
However, due to networking constraints, when a video processing
task is initiated through a query, most videos will not likely
have been uploaded to the video-clouds, especially when the
query is about a recent event. We investigate the problem of
minimal query response time for processing videos stored across
a network; however, this problem is a strongly NP-hard problem.
To deal with this, we first propose a greedy algorithm with
bounded performance. To further deal with the dynamics of the
transmission rate between mobile devices and video-clouds, we
propose an adaptive algorithm. To evaluate these algorithms, we
built an on-demand video processing system. Based on the mea-
surements of the system, we perform simulations to extensively
evaluate the proposed algorithms. We also perform experiments
on a small testbed to examine the realized system performance.
Results show the performance of the greedy algorithm is close
to the optimal and much better than other approaches, and
the adaptive algorithm performs better with more dynamic
transmission rates.

I. INTRODUCTION

The proliferation of handheld mobile devices and wireless
networks has facilitated the generation and rapid dissemination
of vast numbers of videos. Videos taken for various purposes
may contain valuable information about past events that can be
exploited for on-demand information retrieval. For example, a
distributed video processing problem may involve a query of
a set of mobile devices to find a specific vehicle in a region
of a city. Various stored videos within mobile devices, not
necessarily for the intention of capturing the object of interest,
may provide valuable information for such queries. However,
the processing requirements for such applications approach
the computational limits of the mobile devices. Although the
computational capacity of mobile devices has greatly improved
in the past few years, processing (multiple) videos is still
overwhelming for mobile devices.

In this paper, we consider wireless networks consisting
of mobile devices and video-clouds. Instead of storing and
processing videos locally, mobile devices can choose to upload
videos to more capable devices (e.g., computers with a much
powerful GPU), which can significantly accelerate video pro-
cessing. We call these devices video-clouds. However, due to
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the availability gap (the time between when the video is taken
and when it is uploaded) [1] and when a query is issued, video-
clouds will not likely have the pertinent video pre-stored,
especially when the query is about recent events. Therefore,
to reduce the delay of the on-demand information retrieval
from videos related to a query, the related videos can be
processed either locally on the mobile devices or transmitted
and processed on the video-clouds.

Based on this use of wireless networks for video processing,
there are clear scenarios to which this can be applied. Ex-
ample scenarios are emergency response and video forensics,
in which authorities attempt to identify objects or people
of interest in videos captured by surveillance systems or
other mobile devices. These devices may have been either
present or deployed in the time and area of interest. In
these situations, video-clouds can be deployed in this area
to support the storage and processing of videos to address
on-demand information queries about past events. Without
video-clouds, this process is significantly delayed, resulting
in serious consequences in the event that the query is not
addressed satisfactorily.

As an example, an information query may be the following
“did a red truck drive through downtown today?” Then,
all related videos stored on either mobile devices or video-
clouds taken in proximity of the “downtown” area need to
be processed to detect the presence of a “red truck”. The
query will reach all devices in the network and finds all of the
related videos based on video metadata (e.g., GPS, timestamp).
The network needs to determine where to process each video
(locally or offloaded to video-clouds), and to which video-
cloud to upload each video. This approach should minimize
the time required to process all of the related videos, which
is referred to as the query response time.

Unfortunately, the problem of processing pertinent videos
distributed throughout a network with minimal query response
time, which is referred to as the processing scheduling prob-
lem, turns out to be a strongly NP-hard problem. To deal with
this, we design a greedy algorithm with bounded performance,
which determines whether or not to offload each video, and
schedules a transmission sequence to offload videos from a
set of mobile devices before processing the videos. To cope
with the dynamics of the transmission rate between mobile
devices and video-clouds during this process, we further
propose an adaptive algorithm, which makes such decisions
in runtime. We have built an on-demand video processing
system. Based on the measurements of the system, we perform
simulations to extensively evaluate the proposed algorithms.
We also perform experiments on a small testbed to examine



the system performance. The major contributions of this paper
are summarized as follows.

• We formulate the processing scheduling problem for
on-demand video processing to determine the optimal
video offloading and transmission sequence in terms of
minimizing the query response time.

• We design a greedy algorithm with bounded performance,
which exploits average completion time of nodes as a cri-
terion to consecutively determine each video offloading.
The performance of the greedy algorithm is close to the
optimal and much better than other approaches.

• We propose an adaptive algorithm with very low message
overhead to collect information from nodes and then
determine video offloading during runtime. The adaptive
algorithm performs better when the transmission rate be-
tween mobile devices and video-clouds is more dynamic.

• We build an on-demand video processing system for a
network of mobile devices and a video-cloud. Experi-
mental results verify the performance of the designed
algorithms on the testbed.

The rest of this paper is organized as follows. Section II
reviews related work. Section III gives the overview. The
greedy algorithm is presented in Section IV, followed by the
adaptive algorithm in Section V. Section VI evaluates the
performance. Section VII concludes the paper.

II. RELATED WORK

The proliferation of mobile devices with cameras, such
as smartphones and tablets, has substantially increased the
prevalance of images and videos. Images and videos taken
by mobile devices create opportunities for many applications
and have attracted considerable attention from research com-
munities. Much of the research focuses on images. Yan et
al. [2] studied real-time image search on smartphones. Qin
et al. [3] investigated tagging images, integrating information
of people, activity and context in a picture. Wang et al. [4]
optimized the selection of crowdsourced photos based on the
metadata of images including GPS location, phone orientation,
etc. Hua et al. [5] designed a real-time image sharing system
for disaster environments. Likamwa et al. [6] investigated the
energy optimization of image sensing on smartphones.

Some work focuses on videos. Ra et al. [7] designed a sys-
tem for real-time video processing with computation offload.
Simoens et al. [8] designed a system for continuous collection
of crowdsourced videos from mobiles devices using cloudlets.
Jain et al. [9] proposed video-analytics for clustering crowd-
sourced videos by line-of-sight. Chen et al. [10] designed a
response system for uploading crowdsourced videos. However,
none of these works consider on-demand information retrieval
from videos of networked mobile devices.

Mobile cloud computing bridges the gap between the limita-
tions of mobile devices and increasing mobile multimedia ap-
plications. Mobile devices can potentially perform offloading
of computational workloads to either improve resource usage
or augment performance. MAUI [11] and ThinkAir [12] are
the system frameworks to support method-level computation

offloading by code migration. Dynamic execution patterns and
context migration is investigated for code offloading in [13].
Virtual Machine synthesis is exploited for offloading in [14],
[15]. A few works focus on the latency of mobile offloading.
Wang et al. [16] considered reducing task completion by adap-
tive local restart. Kao et al. [17] optimized the latency with
energy constraints by task assignment of mobile offloading.
Unlike existing work that focuses on workload offloading from
individual mobile devices, the major focus of this paper is
to optimize the latency of video processing across multiple
mobile devices and video-clouds through video offloading.

III. OVERVIEW

A. The Big Picture

We consider a wireless network that consists of mobile
devices and video-clouds, where mobile devices can directly
communicate with video-clouds via wireless links. When an
information retrieval query is initiated, videos on the nodes
related to the query need to be processed to answer the query.
Note that when we say node or network node, it refers to
either a mobile device or a video-cloud. In such networks,
queries can be easily disseminated in the network and then
parsed at each node to find the related videos, e.g., based on
metadata of videos, such as GPS location and timestamp. The
dissemination and parsing of the queries is important to this
process but is not the focus of this paper.

Since mobile devices have limited computational capabil-
ity, processing videos on mobile nodes may result in long
processing times, especially when there are many videos to
be processed. Therefore, besides processing videos locally,
mobile devices can also offload videos to video-clouds and
process videos remotely. However, the offload process incurs
other delays, e.g., the processing delay at the video-cloud and
communication delay. Moreover, we consider deep learning for
video processing. Although deep learning (e.g. convolutional
neural networks) can be greatly accelerated by GPU using
parallel computing, processing even a single video will fully
occupy a GPU and thus videos have to be processed sequen-
tially. Therefore, when a video-cloud is busy processing a
video, it has to put other videos into a queue. Moreover, we do
not consider mobile to mobile offloading since mobile devices
have similar computational capacity and such offloading rarely
benefits when considering these delays together.

Moreover, due to the constraints of video processing tech-
niques (e.g., the feature extraction for action recognition
requires all frames be available beforehand [18]), nodes can
process videos only when the video has been fully received
1. Considering this together with the limitation of wireless
link capacity, when more than one mobile device needs to
offload videos to the same video-cloud, it is desirable to
transmit the videos sequentially rather than in parallel such

1Very large videos can be easily segmented into smaller videos by pre-
processing based on the change of scene or context for storing and transmis-
sion. We assume that the videos of mobile devices have already been pre-
processed. More sophisticated optimization incorporating with pre-processing
is to be considered in future work.
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Fig. 1: An example of calculating the completion time of video-clouds

that the video-cloud can process videos early. Similarly, each
mobile device should offload videos sequentially as well. For
example, assuming a node needs to transmit two videos with
the same size to another node and transmitting one video
costs time t, if the two videos are transmitted one by one,
the receiver can start processing the first video at t and the
second video at 2t. However, if the two videos are sent out
simultaneously, the receiver can only start processing at time
2t. In addition, it is possible that different video-clouds are
receiving videos from different mobile devices simultaneously.
This can be accomplished by assigning different wireless
channels at video-clouds so as to avoid potential interference.
These constraints on video processing and communications
extremely complex the problem of processing videos through-
out a wireless network, specifically, when we aim to take
advantage of video-clouds to optimize the query response time.

B. Problem Definition

To minimize the query response time, which is the time
required to process all the videos related to the query, we need
jointly consider several factors: which nodes should process
which videos, and what transmission sequence to perform the
video offloading, as each node can only transmit (or receive)
one video at a time. The processing scheduling problem is to
find such a video offloading and transmission sequence that
minimizes the query response time. The processing scheduling
problem is NP-hard, which can be proved by reduction to ma-
chine scheduling [19]. Considering the special case where the
communication delay of videos is zero, processing scheduling
can be seen as a generalization of machine scheduling with
the constraint that certain jobs can be only scheduled on some
machines (i.e., videos stored at a mobile device can only be
processed at this mobile device or remotely at video-clouds).
Thus, processing scheduling is NP-hard in the strong sense.
We do note that there is past work on machine scheduling,
considering different constraints. However, to the best of our
knowledge, they do not consider the cost of scheduling a job
(i.e., the communication delay of an offloaded video) as a part
of the completion time at the scheduled machine. We will
show the performance of the scheme that does not consider
the communication delay in Section VI.

Let V represent the set of videos stored in the network
and related to the query, and let U denote the set of nodes
in the network. Uc denotes the set of video-clouds and Ud

denotes the set of mobile devices, where U = Uc ∪ Ud. The
query response time Tmax is the maximum time to complete
processing of the assigned videos among all of the nodes. For
video-clouds, the assigned videos are the videos stored locally
and the videos scheduled to be offloaded from mobile devices.

For mobile devices, the assigned videos are the locally stored
videos excluding offloaded videos. Let Tk, k ∈ U denote the
completion time of node k and then Tmax = maxk∈U Tk. The
processing scheduling problem is to minimize Tmax.

C. Completion Time

First, we investigate how to calculate the completion time
of nodes with the assignment of videos. Each video i assigned
at node k, has processing delay pi,k and communication delay
ci,k. Note that pi,k may vary across different types of queries
that require different video processing solutions; and ci,k is
the time from the initiation of the query to when node k fully
receives video i. Note ci,k = 0 represents video i is locally
stored at node k.

Since videos may be scheduled to be processed by video-
clouds instead of locally by mobile devices, we need to
account for the communication delay incurred by the offload.
As a result, the completion time of video-clouds is not simply
equal to the sum of processing delay of assigned videos.
Further, a video-cloud, say k, may also spend time waiting for
assigned videos. Therefore, for each video assigned to k, we
check if the video offload to k is completed before k finishes
processing existing videos or previously received videos. If
the offload is complete, the video-cloud does not incur any
waiting time, otherwise, the waiting time of k for the video
needs to be included in Tk. Therefore, Tk is calculated as the
sum of the processing delay of videos assigned at node k and
the waiting time for each video to be offloaded.

Fig. 1 is an example of calculating the completion time of
video-cloud k involving the offloading of videos with various
cases of processing and communication delays. In this ex-
ample, with knowledge of the processing and communication
delay of each video shown in the figure, the completion time
for k can be calculated by Tk = cb,k + pb,k + pc,k, which can
be interpreted that if node k spends time waiting for a video,
then the time before processing the video can be denoted by
the communication delay of the video. Thus, the calculation
of the completion time of nodes can be generalized as

Tk = max
i∈Vk

(ci,k +
�

j∈Vk

αi,j,kpj,k), (1)

where Vk denotes the set of videos assigned to node k, and
αi,j,k = 1, if cj,k ≥ ci,k, otherwise 0. Note that (1) can also
be used to calculate the completion time of mobile devices.
Since, for mobile device k, ci,k = 0 and αi,j,k = 1 in (1),
Tk =

�
i∈Vk

pi,k.

D. Mathematical Formulation

Suppose x is a solution from the solution space for pro-
cessing scheduling, where x determines which videos each
mobile device should offload, to which video-clouds these
videos should be sent, and the transmission sequence of all
the offloaded videos. The problem then can be formulated as

min max
k∈U

max
i∈Vk(x)

(ci,k(x) +
�

j∈Vk(x)

αi,j,kpj,k)

s.t. αi,j,k = 1, if cj,k(x) ≥ ci,k(x), otherwise 0,

∀k ∈ U, ∀i, j ∈ Vk(x),

(2)
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Fig. 2: Illustration of the greedy algorithm, where m and n are video-clouds, and u and v are mobile devices.

where Vk(x) denotes the set of videos to be processed at node
k of solution x, ci,k(x) denotes the communication delay of
video i under solution x and ci,k(x) is subject to the constraint
that each node can only send or receive one video at any time.

The processing delay of each video can be easily obtained
based on the size of video, the node profile, and the execu-
tion profile of the processing method, as in [11] and [14].
Therefore, for a specific node and processing method, the
processing delay is proportional to the size of the videos
(discussed in Section VI). However, the communication delay
not only depends on the size of videos and the transmission
rate, but also the transmission sequence of the mobile devices
and the receiving sequence for each of the video-clouds. For
example, according to solution x, mobile device k needs to
first offload video a to a video-cloud and then transmit video
b to another video-cloud m. To calculate the communication
delay of cb,m(x), we need to determine when node k can
start to transmit video b to m, which is actually the time
when node k finishes offloading video a or the time when the
video scheduled before b in the receiving sequence at m is
received. Therefore, we see the calculation of communication
delay is nonlinear and thus (2) cannot be further formulated
by integer linear programming, which can be solved by the
CPLEX optimizer. To deal with this, we propose a greedy
algorithm with bounded performance to solve the processing
scheduling problem.

IV. GREEDY ALGORITHM

In this section, we describe the design of the greedy
algorithm, give the performance analysis and discuss how the
greedy algorithm can be easily and efficiently implemented.

A. The Algorithm

The processing scheduling problem addresses how to of-
fload videos from mobile devices to video-clouds to minimize
the maximum completion time for the entire process, which
equivalently can be seen as averaging the completion time of
all the nodes.

Intuitively, it is desirable for video-clouds not to be idle
since they are able to process the videos faster than the mobile
devices. Even more preferable is that they are processing and
receiving videos simultaneously. We consider two situations
in which this may occur. Initially, the video-cloud may have
locally stored videos to process; therefore, it is desirable to
have the mobile devices upload larger videos first. This is
also true when the disparity of the completion time among
the nodes is the greatest. After several offloading steps, there
may be some convergence in terms of the average completion

time. When the completion time among the nodes has less
variability, it is better to offload videos with small size. Based
on these intuitions, we design the greedy algorithm, which
offloads a video from the mobile device with the maximum
completion time to a video-cloud each step and improves
Tmax step by step. The algorithm works as follows.

1. Calculate the completion time for each node according
to (1), and then calculate the average completion time
of nodes, denoted as

T =

�
i∈U Tisi�
i∈U si

, (3)

where si denotes the processing rate of node i. Note
that the completion time of video-clouds may include
idle time for waiting for an incoming video.

2. For the mobile device that has maximum completion
time, say i, find the videos that have sizes less than or
equal to (Tmax −T)si. Note that Tmax = Ti.

3. Then, this video set is iterated from large to small to
find the first pairing of video and video-cloud such that,
if the video is offloaded to the video-cloud, it has the
minimal increase in completion time among all video-
clouds and its completion time is still less than or equal
to T.

4. If there is no valid pair, select the smallest video on
mobile device i and offload it to the video-cloud, say
m. Video-cloud m is chosen such that the completion
time of m is minimal among all video-clouds and Tm <
Tmax after the offloading of the video.

5. If Tm ≥ Tmax (i.e., Tmax cannot be reduced by
offloading videos from mobile devices to video-clouds),
the process stops; otherwise iterate the process from step
one.

Let us use Fig. 2 as an example to illustrate the algorithm.
There are four nodes in the network, where m and n are
video-clouds and u and v are mobile devices. First, each node
calculates its own completion time. In Fig. 2a, since no videos
have been offloaded, the completion time is simply the sum of
the processing delay of videos. Then, we calculate T according
to (3). In (3),

�
i∈U Tisi can be seen as the sum of workload

at each node and
�

i∈U si is the processing power of all nodes.
Thus, T is the weighted average completion time, assuming
that the future offloading of videos does not incur any idle
time on any video-clouds and videos can be fragmented to any
sizes. Therefore, T can be seen as a criterion to determine
video offloading at each step, which avoids overloading the
video-cloud.

As aforementioned, videos that are offloaded from mobile
device v should be smaller than (Tv −T)sv . In Fig. 2a, these



videos are a and c. For video offloading, we first consider
the increase of the completion time of video-clouds (i.e., the
joint consideration of the workload at the video-cloud and the
communication delay of the video). Moreover, we consider
the completion time itself. If it is longer than T after the
assignment of the video, we should choose a smaller video.
In Fig. 2a, since Da > Dc, where D denotes the size of
the video, video a is considered for offloading first. Although
video-cloud n has more workload than m, the offloading of
video a results in less increase in the completion time for n
than for m (i.e., ΔTn < ΔTm and Tn +ΔTn < T), so video
a is offloaded to video-cloud n.

After that, we recalculate T. Since the offloading of video
a does not incur any idle time at video-cloud n, T is the same
as before. As in Fig. 2b, currently, Tmax = Tu and thus the
video offloading will be from mobile device u. Although n has
more workload than m (which means n may not have to be idle
in waiting for b), the offloading of video b to n incurs more
communication delay than m; i.e., cb,n = ca,n + Db/ru,n,
where ru,n denotes the transmission rate between u and n,
while cb,m = Db/ru,m, assuming ru,m = ru,n. Since T <
Tn +ΔTn and T > Tm +ΔTm, video b will be offloaded to
video-cloud m.

Due to the idle time of m incurred by the offloading of
video b, T increases as shown in Fig. 2c. To determine the
assignment of videos, the processing delay at video-clouds
can be easily calculated, but the communication delay is more
complicated to compute as discussed before. For example,
in Fig. 2c, cc,m = max{ca,n, cb,m} + Dc/rv,m. So, video
c is assigned at m rather than n since Tn + ΔTn > T. The
algorithm terminates with this offloading as the remaining two
videos on mobile devices are large and the offloading of these
videos can no longer reduce Tmax.

The processing scheduling problem can be seen as balancing
the completion time at each node. Thus, T is employed as a
criterion for video offloading at each iteration, since T can
be treated as the optimal average completion time. Moreover,
at each step, we consider the increase of the completion time
at video-clouds, which is a joint consideration of the incurred
communication delay and idle time at video-clouds. There-
fore, by regulating video offloading by T and minimizing
the increase of completion time at video-clouds, the greedy
algorithm can reduce Tmax step-by-step towards the optimal.

B. Performance Analysis

For each offloading step, the greedy algorithm attempts to
minimally increase the completion time for the video-cloud.
However, when the completion time with the minimal increase
is more than T, the greedy algorithm chooses to balance
the completion time among video-clouds to avoid overload.
Moreover, due to the heterogeneity of processing rates and
transmission rates, it is hard to give a tight bound on the
performance of the greedy algorithm. However, we try to
give some insights on the algorithm performance with the
variability of these rates.

Let t be the last time when all video-clouds are busy (idle
time does count as busy), x =

�
i∈V Di�
j∈U sj

and let y denote the
processing delay of the video with the largest size at the video-
cloud, which is scheduled to process the last offloaded video
(assuming that Tmax is determined by a video-cloud). Since
T is explored as a criterion to determine video offloading,
together with (1), we have

t ≤ x+
�

i∈Uc

xsi

ri
, (4)

where, to simplify the analysis, we assume that videos of-
floaded at a video-cloud i are transmitted at a constant rate ri
from mobile devices. In (4),

�
i∈Uc

xsi
ri

gives the worse case
of communication delay. Moreover, the last video offloading
of the greedy algorithm minimizes the completion time at the
assigned video-cloud among all video-clouds. Therefore,

Tmax ≤ x+
�

i∈Uc

xsi

ri
+ y +

�

j∈Uc

ysj

rj
. (5)

Let T∗ denote the optimal maximum completion time and
clearly we have

x ≤ T∗

y ≤ T∗.

Together with (5), we have
Tmax ≤ 2T∗(1 +

�

i∈Uc

si

ri
). (6)

From (6), when the processing rate of video-clouds is high,
the communication delay has a great impact on the completion
time of video-clouds. Thus, the approximation ratio goes up.
When the transmission rate is high, the processing delay
dominates the completion time and then the approximation
ratio approaches 2. Although the bound on the performance
is not tight, as shown in Section VI, the greedy algorithm
performs much better than this bound.

For the computational complexity, as one video is offloaded
during each iteration, there are at most |V | iterations for the
greedy algorithm. For each iteration, the videos stored at the
mobile device with the maximum completion time are iterated
over video-clouds to minimize the increase in completion
time. Therefore, the computational complexity of the greedy
algorithm is O(|U ||V |2).

C. Discussion

The greedy algorithm is a centralized approach and requires
the information of all the videos a priori. When a query is
initiated, the information (e.g., data size) about videos stored
in the network and related to the query needs to be collected
at one node, e.g. a video-cloud, to run the greedy algorithm.
The solution is then sent to the other nodes. Alternatively, the
information can be collected at each node and each node may
run the greedy algorithm. This is feasible, since the informa-
tion collected is small and the computational complexity of
the algorithm is low.

The solution of the processing scheduling problem deter-
mines which videos are offloaded between mobiles and video-
clouds. It also determines the transmission sequence, but this
sequence is shown not to be trivial. For example, in Fig. 2,
for mobile device v, the sending sequence is a and then c.



However, v may not transmit c immediately after a; it must be
transmitted after m receives video b from u. Therefore, when
there is a video for which the mobile device cannot locally
determine the transmission start time, the receiving video-
cloud will inform the mobile device when it is ready to receive.
Although such coordination incurs additional communication
overhead (and idle time), the overhead is low since there is at
most one message for each offloaded video.

The greedy algorithm is designed for the scenario where
mobile devices and video-clouds are stationary (e.g., surveil-
lance systems) and the transmission rate between them is
steady (or varies slightly). To cope with the scenario with high
dynamics of transmission rate, we further propose an adaptive
algorithm.

V. ADAPTIVE ALGORITHM

In this section, we consider the case where the transmission
rate between mobile devices and video-clouds dynamically
changes during the on-demand querying of videos process
(but assume that all nodes stay connected to the network
during the process). Due to the dynamics of the transmission
rate, the communication delay of offloaded videos also varies.
This makes the processing scheduling problem more difficult,
because we do not know how the transmission rate changes a
priori. Since the communication delay of an offloaded video is
only known after the transmission of the video is completed,
it is better to determine video offloading in realtime in such
scenarios. Therefore, we propose an adaptive algorithm that
makes video offloading decisions during runtime, through
consideration of the transmission rate, the communication
delay and the completion time.

A. The Algorithm

We assume the same query is issued to the network of
mobile devices and video-clouds. Unlike the greedy algorithm
which determines video offloading before processing any
videos, the adaptive algorithm offloads videos from mobile
devices to video-clouds in realtime.

Intuitively, to offload videos in runtime, the designed al-
gorithm should gradually reallocate videos from mobile de-
vices, balance the workload among video-clouds, and prevent
video-clouds from being overloaded. Moreover, the adaptive
algorithm should not incur too much communication overhead,
which would delay the video transmission. Based on these con-
siderations, the adaptive algorithm is designed to adapt to the
dynamics of transmission rate and reduce Tmax dynamically
as videos arrive and others are being processed.

To describe the adaptive algorithm, we first give the overall
workflow and then detail how the video-cloud decides whether
to accept offload requests from mobile devices and how the
mobile device decides to which video-cloud to offload the
video based on replies from video-clouds.

Upon receiving the query, each node identifies locally stored
videos related to the query. Then, it broadcasts the information
about these videos to other nodes and starts to process videos.
For processing, each mobile device continuously processes

videos from small to large in size. Each video-cloud can
process any video it currently has in any order as the order
will not impact the completion time on the video-cloud.

For video offloading, each time a mobile device offloads the
largest video, for which it has not completed processing (i.e.,
it is possible to offload the video that is being processed).
When a mobile device is ready to offload videos (i.e., it
is not transmitting any video), it will broadcast an offload
request to inform all the video-clouds. When video-clouds
receive an offload request, they will add the request into a
set of unhandled requests. If the mobile device just finished
offloading another video before sending out the request, video-
clouds will acknowledge the actual communication delay of
the previously offloaded video and update the information of
the video-cloud that received that video.

When a video-cloud is ready to receive videos, (i.e., it is
not receiving any video), it will determine whether to accept
the requests it has received and reply the accepted request.
Based on the replies from video-clouds, the mobile device
will eventually determine to which video-cloud the video
should be offloaded. After making the decision, the mobile
device will broadcast a confirmation message to video-clouds
to inform them of the selected video-cloud and the estimated
communication delay of the video, and then start transmitting
the video. When other video-clouds receive the message, they
will mark the offload request from the mobile device as
handled and then update the locally stored information of the
mobile device and the chosen video-cloud, i.e., change the
location of the video from the mobile device to the video-cloud
and add the estimated communication delay for the video.

This process continues until all videos are processed.
A video-cloud needs to decide whether to accept received

requests when it is ready to receive videos, and a mobile
device needs to decide to which video-cloud to offload the
video based on the replies from video-clouds. The algorithm
works as follows.

1. A video-cloud, say m, which is not currently receiving
a video, calculates the completion time of each node
based on the collected information at that time, and then
calculates T according to (3).

2. From the set of unhandled requests, it selects the request
from the mobile device, u, that has the maximum com-
pletion time among the set. Then, using the current trans-
mission rate between the mobile device and itself, which
can be estimated based on signal strength, signal-to-noise
ratio, etc., video-cloud m calculates the completion time
Tm and the increase ΔTm if the video is offloaded to m.

3. If Tu = Tmax, video-cloud m will accept the offload
request when Tm < Tmax and then send Tm and ΔTm to
u. If Tu < Tmax, video-cloud m will accept the request
of u only if Tm ≤ T, otherwise, m will skip the request.

4. Mobile device u may receive multiple replies at the same
time. It will choose the video-cloud that has the minimal
completion time if the received completion times are
more than T. Otherwise, it will select the video-cloud
whose completion time is less than T such that the
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Fig. 3: Illustration of the adaptive algorithm, where m and n are video-clouds, and u and v are mobile devices.

increase in the completion time of the chosen video-cloud
is minimal.

5. After mobile device u selects the video-cloud, it will
broadcast a confirmation message. When video-clouds
receive the message, they will update locally stored
information accordingly as discussed above. The unse-
lected video-clouds that are ready to receive videos will
continuously process the unhandled requests if the request
set is not empty.

See Fig. 3 as a simple example to illustrate the adaptive
algorithm. As in Fig. 3a, at time t1, mobile device u is ready to
offload videos and thus it sends out an offload request of video
b to video-clouds m and n. Since m is currently receiving
video a, it will add the request into the set of unhandled
requests. Since n is not currently receiving a video, it will
calculate Tn and ΔTn if video b is offloaded to itself based on
the current transmission rate between n and u, and then send
them to u as shown in Fig 3b. When u receives the reply, it will
decide to offload b to n, because it only gets one reply. Before
offloading b to n, it will first send out a confirmation message
as in Fig. 3c. When n receives the confirmation message, it
will setup the connection to receive b. Meanwhile when m
receives the message, it will mark the offload request from u
as handled.

B. Discussion

Since, typically, there are more mobile devices than video-
clouds in the network, a video-cloud is most likely to decide
whether to accept a request when it finishes receiving a
video rather than when it receives an offload request. As the
video-cloud selects the request of the mobile device that has
the maximum completion time among the set of unhandled
request, the adaptive algorithm will gradually decrease Tmax

by handling each offload request until it cannot be reduced.
The confirmation message from a mobile device is designed

to inform video-clouds that the offload request has been
handled and the estimated communication delay of the video
to be offloaded, which will be used to calculate T at each
video-cloud when it handles other offload requests. The com-
munication delay is estimated based on the transmission rate at
the beginning of offloading each video. Since the transmission
rate may vary during offloading, the actual communication
delay will be different than what is estimated. However, each
video-cloud will be notified of the completion of each video
offload (by the offloading mobile device) and then the other
video-clouds can update their previously received estimation
by the actual communication delay. Therefore, the difference

between the actual completion time at each video-cloud and
the estimated will only vary by the actual communication
delay of one video. Thus, it only slightly impacts the criterion
T and the performance of the adaptive algorithm.

As message overhead can delay video offloading, the adap-
tive algorithm is designed to produce messages with as little
overhead as necessary. At the beginning of video processing,
each node will broadcast a message including the information
of locally stored videos and thus there will be |U | messages.
As discussed before, the video-cloud will most likely handle
the request after receiving a video, and thus there is most
likely one reply for each request. Therefore, for each offloaded
video, there will be three messages, i.e., request, reply and
confirmation. In the worse case that all videos are offloaded
to video-clouds, the overall message overhead of the adaptive
algorithm is 3|V | + |U |. The small number of messages is
sufficient to obtain all the information to determine video
offloading. Moreover, a node needs to compute the completion
time of all nodes when it (for video-clouds) decides to accept
the offload request or when it (for mobile devices) selects the
video-cloud. However, the computation overhead is low, i.e.
|V |. For the worst case that all videos are offloaded to video-
clouds, the sum of computation overhead of all nodes is 2|V |2.

As video-clouds can also communicate with each other,
we could consider transfer of videos among video-clouds
to balance the workload. However, we decided against this
because video offloading among video-clouds incurs additional
communication delay. That means a video might be transferred
multiple times before being processed and thus increase the
communication delay. As a result, it might also increase the
communication delay of other videos due to the constraint
that each node can only send or receive one video at a time.
However, the adaptive algorithm requires only one transfer
for each offloaded video, and instead of balancing workload
by transferring videos among video-clouds, it balances the
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Fig. 4: Processing delay and completion time of videos with different sizes for
mobile device and video-cloud, where videos have the resolution 1920×1080,
bit rate 16Mbps, frame rate 30fps, and the transmission rate between mobile
device and video-cloud is 16MBps.
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Fig. 5: Comparison between greedy algorithm and optimal solution in terms of Tmax/T∗ and the value of Tmax, where the default setting is |V | = 300,
|Ud| = 20, |Uc| = 3, µ = 50MB, σ = 20MB, r =12MB/s, sd = 2MB/s, sc = 100MB/s and γ = 0.6.

workload when offloading videos from mobile devices to
video-clouds.

The adaptive algorithm estimates the communication delay
of each offloaded video based on the transmission rate just
before offloading and makes video offloading decision in
realtime. Therefore, it is more suitable for the scenarios where
the transmission rate is dynamic during video processing.

VI. PERFORMANCE EVALUATION

In this section, we first evaluate the proposed algorithms by
extensive simulations based on the measurements of an on-
demand video processing system, and then we investigate the
system performance on a small testbed.

A. Processing Delay

First, we evaluate the processing delay of videos in terms
of data size on mobile devices and video-clouds. We imple-
mented our video processing approach for object detection and
recognition based on Caffe [20], a deep learning framework
using convolutional neural networks, on both tablets (Nexus
9) and a video-cloud implementation (Dell Precision T7500
with GeForce GTX TITAN X 12 GB GPU) for processing
acceleration. We took several videos with different sizes using
the tablet and processed them on both the tablet and video-
cloud. Fig. 4a gives the comparison of the processing delay
between the tablet and video-cloud. From Fig. 4a, we can
see that GPU can greatly accelerate video processing. The
processing rate on the GPU is about 100MB/s, while the
processing rate of the smartphone is only about 2MB/s. Both
linearly increase with the data size of videos. When taking the
communication delay of videos into consideration, as shown
in Fig. 4b, the completion time of processing each video
(offloaded from the tablet) on the video-cloud is still much
less than that of the tablet. Note that the specifications of
videos, such as resolution, frame rate and bit rate, may affect
the processing delay. However, mobile devices have similar
camera sensors and can be easily adapted to take videos with
the same specifications.

B. Greedy Algorithm vs. Optimum

In order to evaluate the performance of the proposed al-
gorithms, we setup a simulation environment. The videos are

generated with different data sizes following normal distri-
butions with different µ and σ. To capture the heterogeneity
of the processing rate, the processing rates of mobile devices
and video-clouds are set uniformly and randomly to between
[γsd, sd] and between [γsc, sc], respectively, where sd denotes
the maximum processing ratio for mobile devices and sc
denotes the maximum processing rate of video-clouds. Also,
the transmission rate between a mobile device and a video-
cloud is set uniformly and randomly to [γr, r]. The number of
videos |V |, the number of mobile devices |Ud|, the number of
video-clouds |Uc|, r, µ, σ, γ, sd and sc are system parameters
for simulations. The default settings of these parameters are
|V | = 300, |Ud| = 20, |Uc| = 3, r = 12MB/s, µ = 50MB,
σ = 20MB, γ = 0.6, sd = 2MB/s and sc = 100MB/s, where
the settings of sd and sc correspond to the implementation
measurement in the previous section.

We evaluate the greedy algorithm and compare it with
the optimum achieved by an exhaustive search in various
settings. For each setting, we generate one hundred instances
according to the randomness of simulation setup. The two
solutions run on these instances. The performance is com-
pared in terms of Tmax/T

∗ to demonstrate how the greedy
algorithm approximates the optimum, and the value of Tmax

is also illustrated. Fig. 5 demonstrates the effects of system
parameters on the performance of the greedy algorithm. For
each evaluated parameter, all other parameters use the default
settings. From Fig. 5a, we can see Tmax/T

∗ slightly increases
with the increased number of videos. When using 200 videos,
the greedy algorithm is less than 10% worse than the optimum,
and it is less than 20% when using 800 videos. The increase
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Fig. 6: Comparison between greedy algorithm and baseline in terms of Tmax,
where the default setting is |V | = 300, |Ud| = 20, |Uc| = 3, µ = 50MB,
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is caused by increased video offloading when there are more
videos to be processed. Correspondingly, when there are more
mobile devices in the network, each mobile device has fewer
videos to process and thus less video offloading. Therefore,
the greedy algorithm performs better as the number of mobile
device increases in Fig. 5b. When there is only one video-
cloud in the network, the greedy algorithm achieves the
optimum shown in Fig. 5c. The difference rises when the
number of video-clouds goes up, but it tends to flatten out
when the number of video-cloud increases further.

In Fig. 5d, the greedy algorithm performs close to the
optimum in the settings with different average video sizes.
Fig. 5e demonstrates the effect of transmission rates. When
the transmission rate increases, mobile devices tend to offload
more videos to video-clouds as offloading videos costs less
than before. This leads to an increased deviation between the
greedy algorithm and the optimum, although both Tmax and
T∗ decrease. The completion time of video-clouds is deter-
mined based on the processing delay and communication delay
of videos. When the processing rate of video-clouds increases,
the processing delay decreases and thus the greedy algorithm
performs better as shown in Fig. 5f. Moreover, Tmax/T

∗

also declines when mobile devices are more computationally
powerful as indicated in Fig. 5g, because fewer videos are
offloaded when mobile devices have higher processing rates.
The effect of the diversity of processing rates and transmission
rates is captured in Fig. 5h; i.e., such diversity leads to slightly
increased Tmax and deviation from the optimum.

In summary, through extensive simulations, we can see
that the performance of the greedy algorithm is close to the
optimum in various settings (no more than 20% worse than
the optimum) and it is much less than the theoretical upper
bound as in (6).

C. Greedy Algorithm vs. Baseline

We also compare the greedy algorithm with a baseline
scheme that does not consider communication delay and
iteratively offloads a video from the mobile device that has
the maximum completion time to the video-cloud that has
the minimum. As illustrated in Fig. 6, the greedy algorithm
performs much better than the baseline. When the transmission
rate increases, the impact of the communication delay on the
completion time decreases and thus the difference between
these two algorithms narrows, as shown in Fig. 6a. Moreover,
the baseline is more sensitive to the increased diversity of
processing rates and transmission rates as indicated in Fig. 6b.
Therefore, we can conclude that the greedy algorithm that
considers both processing delay and communication delay is

much faster than the baseline that considers only processing
delay.

D. Adaptive Algorithm vs. Greedy Algorithm

The adaptive algorithm is designed for the scenarios where
the transmission rate varies during video processing. To model
the dynamics of the transmission rate, we also adopt a Markov
chain [21]. Let R denote a vector of transmission rates R =
[r0, r1, . . . , rl], where ri < ri+1. The Markov chain moves at
each time unit. If the chain is currently in rate ri, then it can
change to adjacent rate ri−1 or ri+1, or remain in the current
rate with the same probability. Therefore, for a given vector,
e.g., of four rates, the transition matrix can be defined as

P =

r0 r1 r2 r3

r0

r1

r2

r3
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.

In the simulations, the transmission rate between mobile
device and video-cloud is initially set to a randomly selected
rate from R and it dynamically changes according to the
transition matrix each time unit t. The greedy algorithm
determines video offloading and transmission sequence based
on the initially assigned transmission rates before processing
videos. Then, the simulation runs and produces the runtime
Tmax for the greedy algorithm. The adaptive algorithm runs
during video processing and determines video offloading dur-
ing runtime of simulations.

First, we compare the adaptive algorithm with the greedy
algorithm under static transmission rates. As shown in Fig.
7a, the greedy algorithm outperforms the adaptive algorithm
in various vectors of transmission rates. Moreover, the dif-
ference between the greedy algorithm and adaptive algorithm
expands with the increased diversity of transmission rates.
In the adaptive algorithm, video-clouds can only accept the
offload request after receiving previously offloaded video to
adapt to the variation of transmission rate. Therefore, when a
mobile device selects a video-cloud for offloading, the video-
clouds that are currently receiving videos are not considered.
However, the greedy algorithm makes offloading decisions
beforehand and considers every video-cloud at each step.
Therefore, the greedy algorithm performs better under static
transmission rates.

When transmission rates change dynamically, the perfor-
mance of the greedy algorithm and the adaptive algorithm
is shown in Fig. 7b, where the time unit t = 5s. When
transmission rates are more stable, e.g., R = [16] or [12, 16],
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the greedy algorithm performs better than the adaptive al-
gorithm. When transmission rates are more dynamic, e.g.,
R = [8, 12, 16], [4, 8, 12, 16] or [2, 4, 8, 12, 16], the adaptive
algorithm outperforms the greedy algorithm. Fig. 7c gives the
performance comparison in terms of time unit of the Markov
chain. As short time intervals produce a dynamic transmission
rate during video processing, the adaptive algorithm performs
better when time interval is short, and vice versa.

In summary, as expected, the greedy algorithm is preferred
for the scenarios where the transmission rate is steady, while
the adaptive algorithm is more suitable for the scenarios where
the transmission rate is dynamic.

E. System Performance

We implemented an on-demand video processing system
on a small testbed that includes four Nexus 9 tablets and the
video-cloud implementation which are connected through a
WiFi router, as shown in Fig. 8a. Both the tablets and video-
cloud are running a same deep learning model using Caffe
for object detection on videos. The video-cloud can issue
queries with a targeted object to tablets. For video processing,
frames are extracted from a videos and then object detection
are performed on the frames.

The performance is measured under two different WiFi
data rates (i.e., 8MB/s and 12MB/s). Since the data rate is
stable in our test environment, our system performs the greedy
algorithm rather than the adaptive algorithm to achieve the best
performance. We compare it to local (videos are processed
locally), cloud (all videos are offloaded to the video-cloud
for processing) and baseline. Experiments are performed on
a small set of videos (16 clips with bit rate about 16Mbps
and frame rate 30fps, average size 15 MB). In order not to
introduce any bias on these approaches, we distribute the same
number of videos, each with similar size, on each tablet. The
sizes and the distribution of the videos are shown in Fig. 8b.
As illustrated in Fig. 8c, our system outperforms all other
approaches for both WiFi data rates. Note that the greedy
algorithm is optimal when there is one video-cloud in the
network as discussed in Section VI-B.

VII. CONCLUSION

In this paper, we investigated on-demand video processing
in wireless networks. We formulated the processing schedul-
ing problem, i.e., to process videos with the minimal query
response time in the network consisting of mobile devices and

video-clouds. However, the processing scheduling problem is
a strongly NP-hard problem. To deal with this, we designed
a greedy algorithm and proved the approximation ratio. To
handle the dynamics of the transmission rate between mobile
devices and video-clouds, we further proposed an adaptive
algorithm. Extensive simulations and experiments on a small
testbed show that, as expected, the performance of the greedy
algorithm is close to the optimum and much better than other
approaches, and the adaptive algorithm performs better when
the transmission rate is more dynamic.
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