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Abstract
Multi-agent policy gradient methods in central-
ized training with decentralized execution re-
cently witnessed many progresses. During cen-
tralized training, multi-agent credit assignment is
crucial, which can substantially promote learning
performance. However, explicit multi-agent credit
assignment in multi-agent policy gradient meth-
ods still receives less attention. In this paper, we
investigate multi-agent credit assignment induced
by reward shaping and provide a theoretical un-
derstanding in terms of its credit assignment and
policy bias. Based on this, we propose an expo-
nentially weighted advantage estimator, which is
analogous to GAE, to enable multi-agent credit as-
signment while allowing the tradeoff with policy
bias. Empirical results show that our approach can
successfully perform effective multi-agent credit
assignment, and thus substantially outperforms
other advantage estimators.

1. Introduction
Many real-world problems can be naturally formulated as
cooperative multi-agent reinforcement learning (MARL),
where agents learn to maximize the expected return shared
by all agents. Cooperative MARL has recently witnessed
great promise for solving various tasks, such as autonomous
driving (Zhou et al., 2020), traffic signal control (Xu et al.,
2021), and inventory management (Anonymous, 2022).

A popular learning paradigm in cooperative MARL is Cen-
tralized Training with Decentralized Execution (CTDE)
(Oliehoek et al., 2008; Kraemer & Banerjee, 2016). To
resolve the non-stationarity in multi-agent settings, CTDE
allows each agent to take into account the global state and
other agents’ actions during centralized training, while learn-
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ing its individual policy conditioned on only local informa-
tion. Therefore, the question of how to best exploit the
opportunity of centralized training is important and still
remains open.

In centralized training, an important concept is called multi-
agent credit assignment (Chang et al., 2003). Unlike the
temporal credit assignment problem in single-agent RL (Sut-
ton & Barto, 2018), multi-agent credit assignment describes
the difficulty for each agent to deduce its contribution to
the team through shared rewards. Although it is sometimes
possible to design individual rewards, these rewards are
rarely available in cooperative settings and frequently fail to
motivate individuals to sacrifice for the larger good (Foerster
et al., 2018). Without or with unsuitable credit assignment,
learning in challenging cooperative multi-agent tasks will
be substantially impeded and thus lead to poor performance.

On the contrary, as many previous studies pointed out
(Tumer & Agogino, 2007; Proper & Tumer, 2012; Wang
et al., 2020a), effective multi-agent credit assignment may
significantly benefit policy optimization and improve learn-
ing performance. However, multi-agent credit assignment
still receives much less attention from the community and
is rarely discussed explicitly. Among existing cooperative
MARL approaches, value-based methods (Sunehag et al.,
2018; Rashid et al., 2018; Son et al., 2019; Wang et al., 2021)
perform credit assignment through value function factoriza-
tion, which corresponds to an implicit reward redistribution
among agents (Sunehag et al., 2018). However, theoretical
understanding of the underlying credit assignment of these
approaches is still insufficient (Wang et al., 2020a). On
the other hand, besides using value decomposition (Wang
et al., 2020b; Zhang et al., 2021), policy-based methods per-
form credit assignment usually by counterfactual advantage,
as proposed in COMA (Foerster et al., 2018). However,
empirical results have shown large performance gap be-
tween COMA and state-of-the-art methods in challenging
tasks such as StarCraft Multi-Agent Challenge (SMAC)
(Samvelyan et al., 2019). This might be because its counter-
factual advantage suffers high variance, as some previous
studies pointed out (Wang et al., 2020b; Papoudakis et al.,
2021).

Recently, MAPPO (Yu et al., 2021), a multi-agent vari-
ant of the popular on-policy reinforcement learning algo-
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rithm PPO (Schulman et al., 2017), achieves strong results
compared with state-of-the-art off-policy methods. How-
ever, during centralized training, it only utilizes the central-
ized value function with Generalized Advantage Estimator
(GAE) (Schulman et al., 2016) for policy evaluation. This
will generally lead to identical advantages for each agent
through shared rewards and global information, in which
the agents cannot determine their individual contribution to
the team’s performance.

In this paper, we investigate explicit multi-agent credit as-
signment for multi-agent policy gradient methods by reward
shaping. First, we introduce policy-invariance reward shap-
ing by integrating potential-based reward shaping (Ng et al.,
1999) and difference rewards, i.e., potential-based difference
rewards. Then, we analyze the benefits and potential draw-
backs of this reward shaping method and its variants, which
indicates a tradeoff between credit assignment and policy
bias. Inspired by TD(λ) (Sutton & Barto, 2018) and GAE,
we propose an advantage estimator through an exponen-
tially weighted sum of potential-based difference rewards
to enable multi-agent credit assignment while allowing the
tradeoff with policy bias. We call this estimation scheme
Difference Advantage Estimator (DAE). Extensive empirical
results on matrix game, Multi-Agent Particle Environment
(MPE) (Lowe et al., 2017) and SMAC tasks show that DAE
can successfully perform effective multi-agent credit assign-
ment, and thus substantially outperforms other advantage
estimators including GAE and counterfactual advantage.

Our main contributions, among others, are:

• We provide a theoretical understanding of potential-
based difference rewards in terms of policy invariance
and N -step multi-agent credit assignment. The latter
one directly motivates our method.

• We propose DAE, an advantage estimator, that can
easily tradeoff credit assignment and policy bias by a
single parameter and further allow the bias-variance
tradeoff when combined with GAE.

• We empirically show that DAE outperforms other ad-
vantage estimators in a variety of tasks, which imme-
diately indicates its generality for multi-agent policy
gradients.

2. Background
2.1. Model

We model the cooperative multi-agent task as a decentral-
ized partially observable MDP (Dec-POMDP), defined by
a tuple ⟨N ,S,A, r,P,O,Z, γ⟩. At each timestep, each
agent i ∈ N receives a partial observation oi ∈ Z accord-
ing to O(s; i) at the state s ∈ S. Then, agent i chooses an
action ai ∈ A according to its policy πi(ai|oi). The actions

of all agents form a joint action a. The state s transitions
to next state s′ according to P(s′|s,a) and all agents re-
ceive a shared reward r(s,a). The objective of all agents
is to maximize the cumulative return Eπ[

∑∞
t=0 γ

trt] under
the joint policy π which is the product of each πi, where
γ ∈ [0, 1) is the discount factor. To settle partial observ-
ability, history τi ∈ Ti = (Z × A)∗ is often used to learn
the policy π(·|τi) instead of observation oi. Further, for
notation simplicity, we use πi(·|s) instead. The action-value
function and state-value function of the joint policy π are
defined as:

Qπ(s,a) = Eπ[

∞∑
t=0

γtr(st,at)|s0 = s,a0 = a] (1)

V π(s) = Eπ[

∞∑
t=0

γtr(st,at)|s0 = s]. (2)

We consider actor-critic in the CTDE paradigm as the learn-
ing framework, where a centralized critic is learned with
global information during centralized training, while each
agent learns a decentralized policy based on its local infor-
mation for execution. Following the setting of existing work
(Foerster et al., 2018; Yu et al., 2021), all agents share the
critic. Further, let θ denote the parameters of all agents’
policies that can be shared among agents or not, which does
not affect the conclusions made in this paper.

2.2. Multi-Agent Actor-Critic

Multi-agent actor-critic methods usually learn a centralized
Q-function or V-function as the critic, for which COMA
(Foerster et al., 2018) and MAPPO (Yu et al., 2021) are
respectively the representative method.

COMA learns stochastic policies using the following policy
gradients:

g = Eπ

[∑
i

∇θ log πi(ai|s)Ai(s,a)
]
, (3)

where Ai(s,a) = Q(s,a) − Eai∼πi(·|s)[Q(s, ai, a−i)] is
the counterfactual advantage and a−i denotes the joint ac-
tion of all agents except i. The counterfactual baseline is
subtracted from Q(s,a) to enable multi-agent credit assign-
ment and reduce variance.

The stochastic policies in MAPPO are trained to maximize
the objective:

L(θ) = Eπ

[∑
i

min(ρiAi, clip(ρi, 1− ϵ, 1+ ϵ)Ai)
]
, (4)

where ρi =
πi(ai|s)
πold
i (ai|s)

is the individual importance ratio and
Ai is estimated through GAE (Schulman et al., 2016),

A
GAE(λ)
i,t =

∞∑
l=0

(γλ)lδi,t+l, (5)
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where δi,t+l = rt+l + γV (st+l+1) − V (st+l) is the TD
residual of V (s) (Sutton & Barto, 2018). GAE is an efficient
advantage estimator in single-agent RL that enables bias-
variance tradeoff via parameter λ. However, with a shared
value function, the advantage estimated by GAE is identical
for all agents thereby hard to quantify the contribution of
each agent. A simple way to enable multi-agent credit
assignment is to substitute the advantage estimated by GAE
by the counterfactual baseline. However, this leads to poor
performance, which we will discuss in Section 4.3.

Another kind of multi-agent actor-critic methods (Wang
et al., 2020b; Zhang et al., 2021; Su et al., 2021; de Witt
et al., 2020; Su & Lu, 2021) utilizes value factorization to
effectively learn the value function and implicitly performs
credit assignment. Previous work (Wang et al., 2020a) an-
alyzes linear factorization implies counterfactual credit as-
signment. However, more general theoretical understanding
of the underlying credit assignment of value decomposition
methods is still insufficient.

2.3. Reward Shaping

Reward shaping is a technique for improving a reinforce-
ment learner’s performance by integrating expert knowledge
into MDP through shaping rewards (Gullapalli & Barto,
1992). It has been popular in single-agent RL, and very
recently adopted to the MARL setting as well (Devlin et al.,
2011; Xiao et al., 2021).

In single-agent RL, an important principle of reward shaping
is policy invariance (Ng et al., 1999), which means the
reward shaping should not make the agent deviate from the
true goal and keeps the optimal policy unchanged. Ng et al.
(1999) presented a potential-based reward shaping method
to deal with the temporal credit assignment problem while
preserving policy invariance. The reward after potential-
based reward shaping is given by r̃ = r + f , where the
shaping function f can be written as follows:

f(s′, s) = γϕ(s′)− ϕ(s), (6)

where ϕ : S → R is a real-valued shaping function.

Another type of potential-based reward shaping is called
shaping advice (Wiewiora et al., 2003), where the potential
function depends not only on states but also on actions to
guide the agent with more specific information. One form
of shaping advice is called look-ahead advice, given by:

f(s′, a′, s, a) = γϕ(s′, a′)− ϕ(s, a). (7)

However, to guarantee policy invariance, look-ahead advice
needs a biased greedy action selection (Wiewiora et al.,
2003).

Although these approaches of reward shaping can be applied
in multi-agent settings, they have two major limitations

(Subramanian et al., 2021). The first is that the reward shap-
ing must be done by an expert who has complete domain
knowledge. It is not always possible to find such experts
for complex MARL tasks. Second, the reward shaping is
usually given by a fixed function. But better advice should
be adaptive during training since other agents’ behaviors are
also changing.

In MARL, reward shaping can additionally induce multi-
agent credit assignment. Difference rewards (Wolpert &
Tumer, 2002; Proper & Tumer, 2012) are a powerful way
to perform multi-agent credit assignment, where each agent
can deduce its contribution to the team by capturing the dif-
ference between the shared reward and the reward received
if its action is replaced with a default action. Formally, the
difference rewards for each agent are given by:

r̃i(s,a) = r(s,a)− r(s, a−i, ci), (8)

where ci is a default action for agent i to replace ai. Con-
sidering that it is unclear how to choose the default action,
an alternative form of difference rewards has been proposed
by using aristocrat utility (Wolpert & Tumer, 2002),

r̃i(s,a) = r(s,a)− Eai∼πi [r(s, a−i, ai)]. (9)

Clearly, (9) can quantify the contribution of each agent
given the state and joint action. However, directly applying
difference rewards for each agent does not guarantee policy
invariance, which may severely bias agents from the original
objective. We will discuss this further in the next section.

3. Method
In this section, we first introduce reward shaping with policy
invariance. We then analyze its induced multi-agent credit
assignment. After that, we develop an advantage estimator
based on the reward shaping, called Difference Advantage
Estimation (DAE), which allows the tradeoff between credit
assignment and policy bias.

3.1. Potential-Based Difference Rewards

As previously discussed, multi-agent credit assignment is of
great significance to improve learning efficiency and perfor-
mance; difference rewards capture the contribution of each
agent but make agents deviate from the original goal, while
potential-based reward shaping indeed keeps policy invari-
ance. Therefore, we consider potential-based difference
rewards, which are a direct combination of potential-based
reward shaping and difference rewards,

r̃i(s,a) =r(s,a)︸ ︷︷ ︸
1

+ γEa′i∼πi
[r(s′, a′−i, a

′
i)]︸ ︷︷ ︸

2

−Eai∼πi
[r(s, a−i, ai)]︸ ︷︷ ︸
3

.
(10)
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Unlike the potential based difference rewards in CaP (Devlin
et al., 2014), the potential function ( 2 + 3 ) in (10) is related
to the actions of other agents, which actually belongs to
look-ahead shaping advice. Previous study (Xiao et al.,
2021) proves that, with an adjustment in the policy gradient,
applying look-ahead shaping advice in multi-agent actor-
critic can guarantee the learned policies to be locally optimal
in the original MDP. We adopt difference rewards ( 1 + 3 )
as shaping advice, and the potential function ( 2 + 3 ) is
irrelevant to the action of agent i. Therefore, it can be proved
to guarantee policy invariance without any adjustments. The
following proposition formally shows that our potential-
based difference rewards guarantee policy invariance in
multi-agent actor-critic.

Proposition 3.1 (Policy Invariance). Given the reward
function r(s,a), the policy gradient keeps invariant for
each agent using the potential-based difference rewards
defined in (10).

Proof. Let ϕi(s, a−i)
.
= Eai∼πi

[r(s, a−i, ai)] and Q(s,a)
be the Q-function of the joint policy π in the original MDP.
For each agent i, the Q-function of the joint policy π in
the MDP with the shaped reward function is denoted as
Q̃i(s,a), which differs from Q(s,a) by the potential func-
tion:

Q̃i(s,a) = Eπ[

∞∑
t=0

γt(rt + γϕi(st+1, a
−i
t+1)− ϕi(st, a

−i
t ))]

= Eπ[

∞∑
t=0

γtrt] + Eπ[

∞∑
t=1

γtϕi(st, a
−i
t )]

− Eπ[

∞∑
t=0

γtϕi(st, a
−i
t )]

= Q(s,a)− ϕi(s, a−i).

Then, the policy gradient after reward shaping is given by

g = Eπ[
∑
i

∇θ log πi(ai|s)Q̃i(s,a)], (11)

where the expectation is with respect to the state-action
distribution induced by the joint policy π. Let dπ(s) be the
stationary distribution of states, then we have:

Eπ[
∑
i

∇θ log πi(ai|s)ϕ(s, a−i)]

=
∑
s

dπ(s)
∑
a

π(a|s)
∑
i

∇θ log πi(ai|s)ϕi(s, a−i)

=
∑
s

dπ(s)
∑
i

∑
a−i

π−i(a−i|s)
∑
ai

∇θπi(ai|s)ϕi(s, a−i)

=
∑
s

dπ(s)
∑
i

∑
a−i

π−i(a−i|s)ϕi(s, a−i)∇θ1 = 0.

We immediately have

g = Eπ[
∑
i

∇θ log πi(ai|s)Q̃i(s,a)]

= Eπ[
∑
i

∇θ log πi(ai|s)Q(s,a)].
(12)

Therefore, the policy gradient of each agent keeps invariant
after reward shaping using (10).

Unlike single-agent settings, the concept of an optimal pol-
icy in multi-agent settings is not clear (Devlin & Kudenko,
2011). The policy invariance here mainly implies the un-
biased policy gradient, which is different from the optimal
policy keeping invariant in single-agent settings. In the
CTDE paradigm, the optimality of the joint policy may not
be guaranteed due to the limited class of the product of
individual policies (see Appendix A.2 for further details).

In the following subsection, we analyze how the policy-
invariant reward shaping in (10) enables multi-agent credit
assignment. Based on the analysis, we introduce the tradeoff
between policy bias and credit assignment.

3.2. N -Step Multi-Agent Credit Assignment

Difference rewards induce multi-agent credit assignment,
but it is unclear if the potential-based difference rewards do
the same. In the following, we give a profound understand-
ing of this.

We denoteM(0) as the original MDP with reward r(0)i,t = rt
for each agent i at each timestep t. Then, applying the
potential-based difference rewards will result in a trans-
formed MDP M(1) with the shaped reward r(1)i,t = rt +
γEai [rt+1] − Eai [rt] according to (10), where Eai [rt] de-
notes Eai∼πi

[r(st, a−i,t, ai,t)] for short. For that, we say
M(0) is transformed into M(1) after a one-step reward
shaping. After that, we can perform another step of reward
shaping and have

r
(2)
i,t = r

(1)
i,t + γEai [r

(1)
i,t+1]− Eai [r

(1)
i,t ]

= rt + γ2Eai [rt+2]− Eai [rt],
(13)

where r(2)i,t belongs to MDPM(2). The intuition of repeat-
edly applying reward shaping is that if the shaped rewards
inM(1) induce better credit assignment without any draw-
backs, then further reward shaping inM(2) should be better
than that inM(1).

Before analyzing its drawbacks, let us first consider the
multi-agent credit assignment induced by applying the re-
ward shaping k times, and following (13) we can easily
derive:

r
(k)
i,t = rt + γkEai [rt+k]− Eai [rt]. (14)
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Based on (14), we can observe that the difference rewards
in (9) exactly matchM(∞) with r(∞)

i,t = rt−Eai [rt], since
γk is zero when k → ∞. This means achieving the same
level of credit assignment as difference rewards may need
many steps of the reward shaping.

Specifically, the discounted return of each step of the reward
shaping gives a more intuitive formulation:

G
(0)
i,t =

∞∑
l=0

γlrt+l

G
(1)
i,t =

∞∑
l=0

γlrt+l − Eai [rt]

G
(2)
i,t =

∞∑
l=0

γlrt+l − γEai [rt+1]− Eai [rt]

...

G
(∞)
i,t =

∞∑
l=0

γlrt+l −
∞∑
l=0

γlEai [rt+l],

(15)

where G(k)
i,t is the discounted return of M(k). It is clear

that the discounted return considers one more future step if
one more step of reward shaping is performed. We can also
observe that G(∞)

i,t actually corresponds to the counterfac-
tural advantage of COMA in (3), which involves the credit
assignment of all future steps, and Castellini et al. (2020)
proposed a policy gradient method using G(∞)

i,t .

However, although more steps of the reward shaping enables
better credit assignment, it has several drawbacks.

• First, the reward function is usually unknown for
MARL tasks, which means without extra simulations,
the reward that marginalizes out one agent’s action
needs to be estimated, such as by a neural network.
While G(0)

i,t uses unbiased samples to compute the re-
turn of a trajectory, the term Eai [r] will introduce bias
due to the estimation error, and the bias will accumu-
late over steps of the reward shaping.

• Second, the policy is not invariant for k-step (k ≥ 2)
reward shaping and generally the difference from the
original policy gradient increases as k increases (see
Appendix A.3). Therefore, if we conduct too many
steps of the reward shaping, the estimation error along
with the policy gradient shift may hurt the performance.

We collectively refer to the two drawbacks as policy bias.
Here we do not consider its variance. Although the addi-
tional estimation error brings variance, it serves as a baseline
that reduces variance. Empirically, they have similar vari-
ance (Section 4.3), but too many steps of the reward shaping
may significantly hurt the performance (Section 4.3).

In the next subsection, we will discuss how to balance the
credit assignment and policy bias.

3.3. Difference Advantage Estimation

Inspired by TD(λ) (Sutton & Barto, 2018) and GAE, we in-
troduce a parameter β ∈ [0, 1] and define the β-step reward
shaping by exponentially weighted average of the rewards
fromM(k) as:

r
(β)
i,t = (1− β)(r(0)i,t + βr

(1)
i,t + β2r

(2)
i,t + . . .) (16)

= rt + (1− β)γ
∞∑
l=0

(γβ)lEai [rt+l+1]− Eai [rt].

Although (16) is rather complicated, the corresponding dis-
counted return is quite simple,

G
(β)
i,t =

∞∑
l=0

γlr
(β)
i,t+l

=

∞∑
l=0

γl(rt+l − βl+1Eai [rt+l]).
(17)

From (17), we can see that compared with the return in
the original MDP, the reward rt+l is replaced by rt+l −
βl+1Eai [rt+l]. It is analogous to difference rewards in
which the reward is subtracted by a reward baseline for
each agent that marginalizes out its action. But the baseline
here is heavily discounted for future steps, which implies
that credit assignment at future steps is less taken into con-
sideration similar to discounted rewards. Therefore, (17)
makes a compromise between policy bias and credit assign-
ment, controlled by the parameter β. Larger β considers
more credit assignment at the sacrifice of larger policy bias,
whereas smaller β obtains less credit assignment but reduces
policy bias. There are two notable special cases of this for-
mula: β = 0 and β = 1 reflect the original return and the
return of difference rewards respectively.

Based on the tradeoff between policy bias and credit as-
signment, we can build a stochastic gradient ascent algo-
rithm using the gradients estimated by the returns in (17).
However, the variance of the gradient estimator scales unfa-
vorably with the time horizon, since the effect of an action
is confounded with the effects of past and future actions
(Schulman et al., 2016). Using a value function can sub-
stantially reduce the variance of policy gradient estimates
at the cost of some bias. Therefore, we introduce DAE,
an advantage estimator analogous to GAE, which adjusts
the bias-variance tradeoff while enabling multi-agent credit
assignment. Formally, we define difference advantage esti-
mation as following:

ADAE
i,t =

∞∑
l=0

(γλ)lδi,t+l, (18)

where δi,t+l = rt+l − βl+1Eai [rt+l] + γVt+l+1 − Vt+1.
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Figure 1. (a) Payoff matrices for 2-step matrix game at t = 1 (left) and t = 2 (left), where all indices start from 1. (b) Learning curves of
DAE with different β on the 16-step matrix game, where larger β gets better performance.

The parameter γ from GAE makes a balance between bias
and variance, and the parameter β controls the tradeoff
between the policy bias and credit assignment. Similarly,
β = 1 means the original reward is replaced by difference
rewards, while DAE degenerates to GAE if β = 0.

To realize the advantage estimation in (18), besides the value
network Vφ parameterized by φ, DAE additionally learns
a centralized reward network rψ parameterized by ψ to
approximate the reward function r(s,a). For computational
efficiency, the reward network takes as input the state s
and a−i and outputs the reward of each action of agent i.
Consequently, the expectation of reward can be calculated
efficiently by a single forward pass. The reward network is
trained by minimizing the MSE regression loss

L(ψ) = 1

2
(r(s,a)− rψ(s, a−i, ai))2. (19)

There are several advantages for estimating state values and
rewards separately rather than Q-values as COMA. First,
even though the reward and Q-function have the same di-
mensionality, learning the reward is easier than Q-function
since the regression does not involve many problems like
bootstrapping and moving targets (Castellini et al., 2020).
Second, as many previous studies (Wang et al., 2020b; Pa-
poudakis et al., 2021) have pointed out, COMA suffers large
variance due to the difficulty in learning the Q-values, thus
leading to poor performance in SMAC, and the same issue
arises with MADDPG (Papoudakis et al., 2021) which also
learns the Q-values. Instead, the state-value function has a
lower-dimensional input and is generally easier to learn.

Given the fact that the reward signal is usually delayed in
many tasks, the reward received currently may be credited
to past state-action pairs. A common example is that we
usually attach an additional reward at the end of the episode
to reflect the win or loss. This additional reward cannot
be correctly represented using state-action pair in the final
timestep. Therefore, we utilize a recurrent layer in the
reward network and train it via Backpropagation Through

Time to deal with the delayed reward problem.

For completeness, the training procedure of DAE based on
MAPPO is given in Appendix B.

4. Experiments
In this section, we perform DAE on a set of experiments,
including matrix game, Multi-Agent Particle Environments
(MPE) (Lowe et al., 2017) and StarCraft Multi-Agent Chal-
lenge (SMAC) (Samvelyan et al., 2019), to investigate the
following questions:

1. Is credit assignment in DAE helpful to improve the con-
vergence speed and learning performance? How does
DAE compare with COMA or directly using difference
rewards?

2. What is the empirical effect of varying β ∈ [0, 1] when
optimizing episodic return using DAE?

For these experiments, we perform the policy updates using
MAPPO (Yu et al., 2021) with parameter sharing. Although
the reward network in DAE can be trained with offline sam-
ples from the environment, for fair comparison it is trained
online using the same epochs and samples as for training
the value function. Therefore, in the following experiments,
we can compare DAE with GAE and difference rewards
by only setting β to 0 and 1 respectively. All the learning
curves in the experiments are plotted based on five training
runs with different random seeds using mean and standard
deviation with confidence internal 95%.

4.1. N -Step Matrix Game

To explicitly investigate multi-agent credit assignment, we
design a N -step matrix game. The N -step matrix game has
N agents, N actions for each agent, and totallyN timesteps.
The observation of each agent is a one-hot vector of timestep
t, and the shared reward only depends on one agent’s action
at each timestep t, i.e., rt = u

(t)
t − N+1

2 , where u(t)t = k
if the t-th agent chooses the k-th action at timestep t. All
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Figure 2. Learning curves for three tasks in MPE using DAE with varying values of β. Each curve is averaged over the settings N = 3, 4, 5,
and separate results are available in Appendix D.

indices start from 1. Figure 1(a) is an example for N = 2
and Figure 1(b) shows the learning curves for N = 16
during 1M training steps with different β in DAE. Recall
that β = 0 corresponds to GAE (MAPPO) , and β = 1
means difference rewards. We can see that in the matrix
game larger β has better performance, which implies that
credit assignment is important and facilitates the learning.

There are two reasons for this result. First, the agents receive
the same reward, and thus without credit assignment all
agents obtain the same advantage. This means only one of
the agents obtains the right direction of the gradients since
only one agent has made a real contribution to the team.
Note that the joint action space isO(NN ) which can be very
large, i.e., N = 16 in this game. The irrelevant action from
the other agent imposes great noise on the policy gradient
that will slow the convergence. Instead, if we use difference
rewards for each agent, the other irrelevant agent will receive
zero reward and thus give a right estimate of the policy
gradient. The second reason is that the reward function in
the matrix game is rather simple to learn. And the policy
actually keeps invariance in this game (see Appendix A.3).
This means there is no need to tune β down to reduce policy
bias.

4.2. Multi-Agent Particle Environment

We consider three tasks in MPE, including cooperative navi-
gation, formation control and line control (Agarwal et al.,
2020). In cooperative navigation task, N agents must co-
operate to cover N landmarks while avoiding collusion. In
formation control task, N agents are required to position
themselves into an N -sided regular polygonal formation,
with one landmark at its centre. In line control task, N
agents should position themselves equally spread out in a
line between the two landmarks. In each task, agents ob-
serve the relative positions of other agents and landmarks,
and are collectively rewarded based on the relative posi-
tions. The global state is formed by concatenating all local
observations. For each task, we evaluate on the settings

N = 3, 4, 5.

Figure 2 shows the performance of different β averaged over
the settingsN = 3, 4, 5 in these three tasks. Separate results
on the settings are available in Appendix D. There are two
notable aspects to these results. First, β = 1 and 0.95 gen-
erally converge faster than β = 0. Second, although it may
converge quickly in the beginning, the final performance of
β = 1 is usually worse than β = 0.95 and even β = 0. The
first aspect reveals the same conclusion in the matrix game
that the credit assignment induced by DAE can substantially
facilitate the learning. We believe the second aspect, which
is different from the matrix game, is mainly caused by the
policy bias. Recall that the policy bias consists of two parts,
the estimation error of the reward function and the policy
shifts. The estimation error of the reward mainly depends
on how complex the task is. In MPE, the reward is directly
related to the observed relative distance of each agent and
the dimension of the joint state-action space is low. There-
fore, the bias induced by the estimation error may not be
enough to impair the performance. This conclusion can also
be observed from the result that β = 1 and 0.95 converge
faster. However, the second part of the policy bias actually
influences the final performance. Although larger β enables
better credit assignment, it also more severely biases the
learned policy, making the agent deviate from the original
goal. For difference rewards (β = 1), it is also known as
self-consistency problem (Wolpert & Tumer, 2002). There-
fore, the performance of β = 1 is worse than β = 0.95.
The result also empirically shows that DAE can effectively
overcome this problem by slightly reducing β.

4.3. StarCraft Multi-Agent Challenge

We evaluate DAE on SMAC in nine maps including three
easy maps: 2s3z, 1c3s5z and MMM, three hard maps:
3s5z, 3s vs 5z and 5m vs 6m, and three super hard maps:
3s5z vs 3s6z, MMM2 and corridor. We train the algorithm
for 1M, 5M, 10M environment steps and use 15, 10, 5
epochs for easy, hard, super hard maps, respectively. All
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Figure 3. Learning curves in terms of win rates of DAE with different β and COMA advantage in ‘easy’, ‘hard’ and ’super hard’, each
averaged over three corresponding maps. Separate results in each map are available in Appendix D.

other parameters are fixed across the nine maps (see Ap-
pendix C). Results are shown in Figure 3, where ‘easy’
corresponds to the win rate averaged on three easy maps.
And the ‘hard’ and ‘super hard’ are the same respectively.
Separate results in each map are available in Appendix D.
Moreover, we also choose COMA advantage as a baseline
of advantage estimator on MAPPO.

In general, the results show that DAE with proper β can sub-
stantially improve the convergence speed and stability. We
can observe that β = 1 and COMA advantage are very un-
stable and have poor performance in all the maps. Note that
COMA advantage and DAE (β = 1) are two similar ways
realizing difference rewards. We believe the main reason is
also similar, i.e., the high estimation error for the joint state-
action space results in highly biased advantages. Different
from the matrix game and MPE tasks, SMAC has a much
higher dimensional joint state-action space which means the
reward function is difficult to learn and the Q-function is
even harder. As for COMA, although some previous studies
(Wang et al., 2020b; Papoudakis et al., 2021) consider its
poor performance comes from the large variance of pol-
icy gradient, we found that another important factor is that
COMA advantage is actually a high-bias advantage estima-
tor (see Appendix D for further details). Compared with
β = 1 which has large policy bias, β = 0.9 can efficiently
discount the bias and significantly improve the performance.
Although the high estimation error of the reward mainly af-
fects the performance, the policy shifts can also be observed,
i.e., in easy and hard maps, β = 0.9 converges faster than
β = 0, but its final performance is weaker. Therefore, to
reduce the policy bias, we evaluate smaller β (0.3 and 0.6)
and they show a better tradeoff between credit assignment
and policy bias in this environment. In hard maps, β = 0.6
is the best, while in super hard maps, β = 0.3 is the best.
The empirical results across all the experiments in Section 4
show that, to enable a good tradeoff between credit assign-
ment and policy bias, β needs to be reduced generally with
the difficulty of the task.
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Figure 4. Standard deviation of advantages of DAE with different
β on 2s3z in SMAC.

For DAE, the estimated reward introduces additional estima-
tion errors that may cause large variance. However, the term
Eai [rt] in (18) also serves as a baseline which will reduce
variance. Figure 4 shows the standard deviation of advan-
tages of DAE with different β on map 2s3z. In general, their
variances are similar and on the same scale, which implies
DAE does not affect the variance much.

5. Conclusion
We propose DAE, an advantage estimator for multi-agent
policy gradients, which enables multi-agent credit assign-
ment while allowing the tradeoff with policy bias. The key
idea lies in the integration of potential based difference re-
wards and the exponentially weighted average, analogous
to TD(λ). We start from the policy invariance reward shap-
ing (Section 3.1) and extend it to N -step reward shaping
(Section 3.2) to perform better credit assignment. To tackle
the drawback of policy bias, we introduce a parameter β
(Section 3.3) which allows to smoothly interpolate between
high bias (β = 1) and low bias (β = 0) estimations. Em-
pirical results show that slightly reducing the parameter β
can reduce the policy bias while enabling credit assignment,
and thus significantly improves the performance in a variety
of cooperative multi-agent tasks.
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A. Mathematical Details
In this section, we start with some useful lemmas in single-agent RL as well as in imitation learning (Xu et al., 2020;
Agarwal et al., 2019). Although these lemmas are not for MARL, we can regard them as lemmas for the joint policy and
value function in centralized training of MARL. Therefore, most of them are directly applicable in MARL, and the rest
which may not be applicable will be discussed in the section A.2. For simplicity, all the notations in the following are in
single-agent setting unless otherwise specified.

We assume the reward function is normalized, i.e., r(s, a) ∈ [0, 1], and define V π(µ) = Es0∼µ[V π(s0)] as the expected
value under the initial state distribution µ. The objective is to maximize the expected value from the initial state distribution,

max
πθ

V πθ (µ). (20)

We define the discounted state visitation distribution dπ of a policy π as

dπs0(s) = (1− γ)
∞∑
t=0

γtPr(st = s|π, s0), (21)

and dπµ(s) = Es0∼µ[dπs0(s)] as the discounted state visitation distribution under initial state distribution µ. The discounted
state-action visitation distribution is defined by ρπµ(s, a) = dπµ(s)π(a|s). Then the policy gradient is given by

∇θV πθ (µ) =
1

1− γ
Es∼dπθ

µ
Ea∼πθ

[∇θ log πθ(a|s)Qπθ (s, a)]

=
1

1− γ
Es∼dπθ

µ
Ea∼πθ

[∇θ log πθ(a|s)Aπθ (s, a)].

(22)

A.1. Lemmas

The following three lemmas (Lemma A.1, A.2, A.3) come from Xu et al. (2020).

Lemma A.1. For two policies π and π′ we have that

DTV (d
π
µ, d

π′

µ ) ≤ γ

1− γ
Es∼dπµ [DTV (π(·|s), π′(·|s))]. (23)

Proof. By definition, we have

dπµ(s) = (1− γ)
∞∑
t=0

γtPr(st = s|π, µ)

= (1− γ)(I− γPπ)−1µ,

where Pπ(s′|s) =
∑
a Pr(s

′|s, a)π(a|s). Then we can obtain that

dπ
′

µ − dπµ = (1− γ)[(I− γPπ′)−1 − (I− γPπ)−1]µ

= (1− γ)(Mπ′ −Mπ)µ

= (1− γ)Mπ′(M−1
π −M−1

π′ )Mπµ

= (1− γ)γMπ′(Pπ′ − Pπ)Mπµ

= γMπ′(Pπ′ − Pπ)dπ,

where Mπ = (I− γPπ)−1. Therefore,

DTV (d
π
µ, d

π′

µ ) =
1

2
∥γMπ′(Pπ′ − Pπ)dπ∥1

≤ γ

2
∥Mπ′∥1∥(Pπ′ − Pπ)dπµ∥1,
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where ∥Mπ′∥1 is bounded:

∥Mπ′∥1 = ∥
∞∑
t=0

γtP tπ′∥1 ≤
∞∑
t=0

γt∥Pπ′∥t1 ≤
1

1− γ

and ∥(Pπ′ − Pπ)dπµ∥1 is also bounded:

∥(Pπ′ − Pπ)dπµ∥1 ≤
∑
s,s′

|Pπ′(s′|s)− Pπ(s′|s)|dπµ(s)

=
∑
s,s′

|
∑

Pr(s′|s, a)(π′(a|s)− π(a|s))|dπµ(s)

≤
∑
s,a,s′

Pr(s′|s, a)|π′(a|s)− π(a|s)|dπµ(s)

=
∑
s

dπµ(s)
∑
a

|π′(a|s)− π(a|s)|

= 2Es∼dπµ [DTV (π(·|s), π′(·|s))].

This completes the proof.

Lemma A.2. For two policies π and π′ we have that

DTV (ρ
π
µ, ρ

π′

µ ) ≤ 1

1− γ
Es∼dπµ [DTV (π(·|s), π′(·|s))]. (24)

Proof. By definition, we have

DTV (ρ
π
µ, ρ

π′

µ ) =
1

2

∑
s,a

|π(a|s)dπµ(s)− π′(a|s)dπ
′

µ (s)|

≤ 1

2

∑
s,a

|π(a|s)− π′(a|s)|dπµ(s) +
1

2

∑
s,a

π′(a|s)|dπµ(s)− dπ
′

µ (s)|

= Es∼dπµ [DTV (π(·|s), π′(·|s))] +DTV (d
π
µ, d

π′

µ )

≤ 1

1− γ
Es∼dπµ [DTV (π(·|s), π′(·|s))],

where the last inequality follows Lemma A.1.

Lemma A.3. For two policies π and π′ we have that

|V π(µ)− V π
′
(µ)| ≤ 2

(1− γ)2
Es∼dπµ [DTV (π, π

′)] (25)

Proof. Recall that for any policy π, the value can be written as V π(µ) = 1
1−γE(s,a)∼ρπµ [r(s, a)]. Then we have

|V π(µ)− V π
′
(µ)| = | 1

1− γ
E(s,a)∼ρπµ [r(s, a)]−

1

1− γ
E(s,a)∼ρπ′

µ
[r(s, a)]|

≤ 1

1− γ
∑
s,a

|(ρπµ(s, a)− ρπ
′

µ (s, a))r(s, a)|

≤ 2

1− γ
DTV (ρ

π
µ, ρ

π′

µ )

≤ 2

(1− γ)2
Es∼dπµ [DTV (π, π

′)]

where the last inequality follows Lemma A.2.
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Lemma A.4. (The performance difference lemma (Kakade & Langford, 2002)) For any two policies π, π′, we have

V π(s)− V π
′
(s) =

1

1− γ
Es∼dπs Ea∼π[A

π′
(s, a)] (26)

Proof. Using a telescoping argument, we have

V π(s)− V π
′
(s) = Eπ[

∞∑
t=0

γtr(st, at)]− V π
′
(s)

= Eπ[
∞∑
t=0

γt(r(st, at) + V π
′
(st)− V π

′
(st))]− V π

′
(s)

= Eπ[
∞∑
t=0

γt(r(st, at) + γV π
′
(st+1)− V π

′
(st))]

= Eπ[
∞∑
t=0

γt(r(st, at) + γE[V π
′
(st+1)|st, at]− V π

′
(st))]

= Eπ[
∞∑
t=0

γtAπ
′
(st, at)] =

1

1− γ
Es∼dπs Ea∼π[A

π′
(s, a)].

Lemma A.5. (Agarwal et al., 2020) For the softmax policy class, i.e., πθ(a|s) = exp(θs,a)∑
a′ (exp θs,a′ )

where θ ∈ R|S||A|, we have

∂V πθ

∂θs,a
=

1

1− γ
dπθ
µ (s)πθ(a|s)Aπθ (s, a). (27)

Proof. First note that

∂logπθ(a|s)
∂θs′,a′

= 1[s = s′](1[a = a′]− πθ(a′|s)).

We have

∂V πθ

∂θs,a
= Eπ

[ ∞∑
t=0

γt1[st = s]
(
1[at = a]Aπθ (s, a)− πθ(a|s)Aπθ (st, at)

)]

= Eπ

[ ∞∑
t=0

γt1[(st, at) = (s, a)]Aπθ (s, a)

]
− πθ(a|s)

∞∑
t=0

γtEπ
[
1[st = s]Aπθ (st, at)

]
=

1

1− γ
Es′∼dπθ

µ
Ea′∼πθ

[
1[(s′, a′) = (s, a)]Aπθ (s, a)

]
− 0

=
1

1− γ
dπθ
µ (s)πθ(a|s)Aπθ (s, a),

where the second to last step comes from that for any policy
∑
a π(a|s)Aπ(s, a) = 0.

A.2. Optimality in MARL

The concept of an optimal policy in MARL is not clear as (Devlin & Kudenko, 2011) in single-agent settings. Generally, the
optimal policy in multi-agent tasks can be defined as some Nash equilibrium. Specially, in the fully cooperative setting with
shared reward, the optimal policy is Pareto optimality which is also one of the Nash equilibrium. Other Nash equilibrium
represents sub-optimal policy. As a result, the ultimate goal of cooperative MARL is Pareto optimality which maximizes the
shared expected return. However, the optimal policy of the team is not always available with individual policies.

Formally, let us consider the results in LemmaA.3. Denote the optimal policy as π∗, then for any policy π, we have
V π ≥ V ∗ − 2

(1−γ)2Es∼d∗µ [DTV (π
∗, π)]. This means if we can learn a nearly optimal policy, i.e. Es∼d∗µ [DTV (π

∗, π)] ≤ ϵ,
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V π can be very close to the optimal value when ϵ is sufficiently small. However, in multi-agent settings with decentralized
policies, we may not be able to obtain a very small ϵ due to the limited class of the policy. To validate this, we only
need a simple example. Consider a repeated game where two agents have two actions a1 and a2. The joint policy
π(ai, aj) = π1(ai) · π2(aj), i, j = 1, 2, where π1 and π2 are individual policies for the two agents respectively. If
the optimal policy is given by π∗(a1, a1) = π∗(a2, a2) = 1

2 and π∗(a1, a2) = π∗(a2, a1) = 0, it is easy to show that
DTV (π

∗, π1π2) ≥
√
2− 1 for any policy π1 and π2, which means that ϵ ≥

√
2− 1. Note that the bound in Lemma A.3 is

tight up to a constant C (Xu et al., 2020). Therefore, in the worse case, we can only have V π ≥ V ∗ − 2(
√
2−1)

(1−γ)2 C, which
means the value V π can have a large gap to the optimal value for any policy π.

A.3. Policy Bias

In Section 3.1, we discussed the k-step (k ≥ 2) reward shaping enables credit assignment more as k increases, but
also shifts the policy gradients more. Here we give some theoretical analysis. Considering k-step reward shaping
r
(k)
i,t = rt + γkEai [rt+k]− Eai [rt], we have

Q̂
(k)
i (s,a) = Eπ[

∞∑
t=0

γtr
(k)
i,t ] = Q(s,a)−

k−1∑
t=1

γtϕ
(t)
i (s,a)− ϕ(0)i (s, a−i), (28)

where ϕ(k)i (s,a) = Eπ[rk] represents the expected reward in the k-th step after the given state and actions.

As discussed in Section A.2, dealing with multi-agent policy gradient directly will not yield a tighter bound than 2(
√
2−1)

(1−γ)2 C.
This is because the joint policy class is constrained by individual policies. If individual policies, for example, are softmax
parameterized, the joint policy is restrictive and will not be a softmax function. To circumvent this issue and simplify the
theoretical analysis, we consider the policy gradient of one single agent with softmax policy and some entropy regularization
term, i.e.,

L(θ) = V πθ (µ) + λH(πθ), (29)

where H(πθ) = −Es∼UnifS [DKL(UnifA, πθ(·|s))]. In this case, other agents’ policies can be considered as fixed, and we
can apply the results in Agarwal et al. (2019) to get a lower bound of the value function. The following theorem formally
states that the bound between the optimal value and learned value becomes looser as k increase.

Theorem A.6. For the biased pilicy gradient

∇θV̂ πθ =
1

1− γ
E
s∼dπθ

ρ
Ea∼πθ

[∇θ log πθ(a|s)(Âπθ

k (s, a)], (30)

where Âk = Q̂(k) − Eπ[Q̂(k)]. Suppose the policy gradient is such that:

∥∇θL̂(θ)∥2 ≤ ϵ (31)

where ∇θL̂(θ) = V̂ πθ + λH(πθ) and ϵ ≤ λ/2|S| |A|. Then we have for any initial distribution µ′:

V πθ (µ′) ≥ V ∗(µ′)− 2

1− γ

(
λ

∥∥∥∥dπ∗

µ′

µ

∥∥∥∥
∞

+

k−1∑
t=1

γt
)
. (32)

Proof. The proof consists of showing that maxa Â
πθ (s, a) ≤ 2λ/µ(s)|S| for all states. To see that this is sufficient, observe

that by the performance difference lemma (Lemma A.4),

V ∗(µ′)− V πθ (µ′) =
1

1− γ
∑
s,a

dπ
∗

µ′ (s)π∗(a|s)Aπθ (s, a)

≤ 1

1− γ
∑
s

dπ
∗

µ′ (s)max
a
Aπθ (s, a).
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Note that

Âπθ (s, a) = Aπθ (s, a)−
k−1∑
t=1

γt(ϕ
(k)
i (s, a)− Eπ[ϕ(k)i (s, a)])

≥ Aπθ (s, a)−
k−1∑
t=1

γt(|ϕ(k)i (s, a)|+ |Eπ[ϕ(k)i (s, a)]|)

≥ Aπθ (s, a)− 2

k−1∑
t=1

γt,

(33)

we have

V ∗(µ′)− V πθ (µ′) ≤ 1

1− γ
∑
s

dπ
∗

µ′ (s)(
2λ

µ(s)S
+ 2

k−1∑
t=1

γt)

≤ 2λ

1− γ
max
s

(dπ∗

µ′ (s)

µ(s)

)
+

2

1− γ

k−1∑
t=1

γt.

(34)

which then completes the proof.

We now proceed to show that maxa Â
πθ (s, a) ≤ 2λ/µ(s)|S|. For this, it suffices to bound Âπθ (s, a) for any state-action

pair s, a where Âπθ (s, a) > 0 else the claim is trivially true. Consider a (s, a) pair such that Âπθ (s, a) > 0. Using the
policy gradient expression for the softmax parameterization (Lemma A.5),

∂L̂(θ)

∂θs,a
=

1

1− γ
dπθ
µ (s)πθ(a|s)Âπθ (s, a) +

λ

|S|
(
1

|A|
− πθ(a|s)), (35)

For the first term, note that Lemma A.5 only requires
∑
a π(a|s)Aπ(s, a) = 0. Therefore it holds with Âπθ , i.e., the biased

policy gradient. The second term comes from that H(π) = 1
|S||A|

∑
s,a log π(a|s) + log |A|.

Then, the gradient norm assumption ||∇θL̂(θ)||2 ≤ ϵ implies that:

ϵ ≥ ∂L̂(θ)

∂θs,a
=

1

1− γ
dπθ
µ (s)πθ(a|s)Âπθ (s, a) +

λ

|S|
(
1

|A|
− πθ(a|s))

≥ λ

|S|
(
1

|A|
− πθ(a|s)),

(36)

where we have used Âπθ (s, a) > 0. Rearranging and using our assumption ϵ ≤ λ/(2|S||A|),

πθ(a|s) ≥
1

|A|
− ϵ|S|

λ
≥ 1

2|A|
.

Solving for Âπθ (s, a) in (36), we have

Âπθ (s, a) =
1− γ
dπθ
µ (s)

(
1

πθ(a|s)
∂L̂(θ)

∂θs,a
+

λ

|S|

(
1− 1

πθ(a|s)|A|

))
≤ 1− γ
dπθ
µ (s)

(
2|A|ϵ+ λ

|S|

)
≤ 2

1− γ
dπθ
µ (s)

λ

|S|
≤ 2λ/µ(s)|S|,

where the penultimate step uses ϵ ≤ λ/(2|S||A|) and the final step uses dπθ
µ (s) ≥ (1 − γ)µ(s). This completes the

proof.

Theorem A.6 implies that the policy becomes more biased as k increase. However, compared with the unbiased case (k = 1),
the bias is not minimal even for k = 2, where the bound is loosened by the term 2γ

1−γ . To smoothly interpolate between the
biased and unbiased policy gradient, we can introduce a parameter β and do an exponentially weighted sum of the k-step
reward shaping as in (16). The bias can then be smoothly controlled by selecting different beta values.
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Corollary A.7. Suppose the policy gradient is such that

∥∇θL̂β(θ)∥2 ≤ ϵ, (37)

and ϵ ≤ λ/2|S||A|. Then we have that:

V πθ (µ′) ≥ V ∗(µ′)− 2

1− γ

(
λ

∥∥∥∥dπ∗

µ′

µ

∥∥∥∥
∞

+
βγ

1− βγ

)
. (38)

Proof. Observe that the Q function after an exponentially weighed average of k-step reward shaping is given by:

Q̂
(β)
i (s,a) = Q(s,a)−

∞∑
t=1

(βγ)tϕ
(t)
i (s,a)− ϕ(0)i (s, a−i). (39)

Comparing (39) with (28), we can let k =∞ and replace γ with βγ in the last term of (32). Then we get

V πθ (µ′) ≥ V ∗(µ′)− 2

1− γ

(
λ

∥∥∥∥dπ∗

µ′

µ

∥∥∥∥
∞

+

∞∑
t=1

(βγ)t
)

= V ∗(µ′)− 2

1− γ

(
λ

∥∥∥∥dπ∗

µ′

µ

∥∥∥∥
∞

+
βγ

1− βγ

)
.

This corollary gives a lower bound of the learned value function using the weighted-sum of k-step reward shaping. It should
be noted that this does not imply that utilizing the gradient after reward shaping will result in poor policy.

In addition, we can expect a tighter bound if the transition function is not very action-dependent, which implies the term
ϕ
(k)
i (s, a)− Eπ[ϕ(k)i (s, a)] in (33) will be smaller. An extreme example is that P (s′|s,a) = P (s′|s), then we have

ϕ
(k)
i (st,at) = Est+k∼P (st+k|st)Eat+k∼π[r(st+k,at+k)] = ϕ

(k)
i (st)

Then the policy gradient (30) is unbiased since ϕ is only related to state. This is the case with the matrix game (Section 4.1)
where the reward shaping keeps policy invariant.

B. Pseudo Code
We describe the details of DAE based on MAPPO in Algorithm 1. Specifically, in line 17 we additionally store the action
distribution pt of all agents to compute the reward expectation as E

a
(i)
t ∼p(i)t

[R
(i)
t ] (

∑
a
(i)
t
p
(i)
t R

(i)
t for discrete actions) for

each agent i at time step t. The target value V̂ in line 20 is computed using TD(λ) backup: V̂ (i)
t = V

(i)
ϕold

+
∑∞
l=0(γλ)

lδ
(i)
t+l,

as in MAPPO. Consequently, the critic network with parameter φ is trained to minimize the loss function

L(φ) = max[(V
(i)
ϕ − V̂ (i))2, (clip(Vϕold , Vϕold − ϵ, Vϕold + ϵ)− V̂ (i))2]. (40)

C. Hyperparameter Settings for Experiments
The implementation of MAPPO follows the original paper (Yu et al., 2021). The hyperparameters are basically default
setting in MAPPO as presented in Table 1, Table 2 and Table 3.

D. Additional Results
D.1. Separated Results on MPE and SMAC

Figure 5 shows the separated results on MPE for three tasks and N = 3, 4, 5 respectively.
Figure 6 shows the separated results on SMAC for nine maps respectively.
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Algorithm 1. Recurrent-MAPPO with DAE

1: Initialize θ, the parameters for policy π and φ, the parameters for critic V and ψ the parameters for reward R
2: while step ≤ step max do
3: set data buffer D = {}
4: for j = 1 to batch size do
5: τ = [] empty list
6: initialize h(1)0,π, ..., h

(n)
0,π actor RNN states

7: initialize h(1)0,V , ..., h
(n)
0,V critic RNN states

8: initialize h(1)0,R, ..., h
(n)
0,R reward RNN states

9: for t = 1 to T do
10: for all agent i do
11: p

(i)
t , h

(i)
t,π = π(o

(i)
t , h

(i)
t−1,π; θ)

12: a
(i)
t ∼ p

(i)
t

13: v
(i)
t , h

(i)
t,V = V (st, h

(i)
t−1,V ;φ)

14: R
(i)
t , h

(i)
t,R = R(st, h

(i)
t−1,R,at;ψ)

15: end for
16: Execute actions at, observe rt, st+1, ot+1

17: τ+ = [st,ot,ht,π,ht,V ,ht,R,at,pt, rt,Rt, st+1,ot+1]
18: end for
19: Compute advantage estimate Â via DAE on τ
20: Compute target value V̂ on τ
21: Split trajectory τ into chunks of length L
22: for l = 1 to T//L do
23: D = D

⋃
(τ [l : l + T ], Â[l : l + T ], V̂ [l : l + T ])

24: end for
25: end for
26: for mini-batch k = 1, ...,K do
27: b← random mini-batch from D with all agent data
28: for each data chunk c in the mini-batch b do
29: update RNN hidden states for π,V and R from first hidden state in data chunk
30: end for
31: end for
32: Adam updates θ,φ and ψ with mini-batch b
33: end while

D.2. Additional Results for COMA

As an advantage estimator, using Q-values subtracted a baseline is highly biased (Schulman et al., 2016). The bias comes
from the estimation error of Q-values. Therefore, the estimation difficulty of the joint Q-values in COMA yields large bias
to the policy gradients. A simple way to reduce bias at the cost of some variance is to replace the original advantage by
n-step TD residual:

δnt = rt + γrt+1 + ...+ γnQ(st+n+1,at+n+1)− V (st), (41)

where V (s) = Eai∼πQ(s,a) for each agent i in COMA. That is, the Q(st,at) in the original advantage is expanded to the
n-step Q: rt+γrt+1+ ...+γ

nQ(st+n+1,at+n+1), which consists of two terms, an n-step unbaised but high-variance return,
and a lower biased term due to the discount factor γn. As shown in Figure 7, we found this modification can significantly
improves COMA’s performance. However, there is still a large performance gap between COMA and DAE.

E. Future Work
In this paper, we realize DAE using a reward network with recurrent layers. For the reward learning, many approaches
can be employed to further improve the performance, such as factorization (Castellini et al., 2019) and redistribution
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Table 1. Common hyperparameters used across all environments.

hyperparameters value hyperparameters value hyperparameters value

gamma 0.99 optimizer Adam actor hidden dim 64
gae lamda 0.95 network rnn value hidden dim 64

num mini-batch 1 ppo-clip 0.2 reward hidden dim 128
max grad norm 10 activation ReLU hidden layer 1MLP+1GRU

Table 2. Hyperparameters used in Matrix Game (MG) and MPE.

hyperparameters value hyperparameters value

actor lr 7e-4 episode length (MG) 16
critic lr 7e-4 episode length (MPE) 25

rollout threads 128 epoch 10

Table 3. Hyperparameters used in SMAC.

hyperparameters value hyperparameters value

actor lr 5e-4 episode length 400
critic lr 5e-4 rollout threads 8

(Arjona-Medina et al., 2019). Another possible option is to utilize an additional Q-network which learns a heavier discounted
return. We will investigate this in future work.
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(c) cooperative navigation (N = 5)
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Figure 5. Separated results on MPE tasks.
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(c) MMM
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Figure 6. Separated results on nine SMAC maps.
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Figure 7. Additional results for COMA, where we compare the advantage estimator Q− V as in COMA and n-step Q− V as in (41).


